Market Risk Prediction under Long Memory: When VaR is Higher than Expected

Harald Kinateder
Niklas Wagner

DekaBank Chair in Finance and Financial Control
Passau University

19th International AFIR Colloquium 2009
1 Motivation

2 Scaling

3 Market Risk Prediction
 - GARCH
 - GARCH-LM: A new Approach
 - Backtesting

4 Empirical Analysis
 - Long Range Dependence
 - VaR Forecasting Performance Results
Motivation

Several periods of financial market stress:
- the market crash in October 1987,
- a number of accounting scandals at the beginning of the new millennium and
- the recent banking crises

have increased the regulatory and industry demand for effective (market) risk management approaches.

Despite the BIS demands no concrete method, one concept become popular: **Value-at-Risk (VaR)**.
Motivation

GARCH models generate satisfactory volatility forecasts for the very next period.

Long-term VaR measures usually require volatility predictions for longer periods:
- several weeks or even
- several months.

Despite their high practical relevance most focus has been placed on **one-day ahead** forecasts.
Motivation

Contribution of the article

- New insights into
 - risk prediction under long memory and
 - issues concerning backtesting for long-term risk measures.

- New scaling based GARCH-LM model for multi-period risk prediction.
In finance scaling is very important, since Basel rules of capital adequacy require banks to calculate VaR numbers for a minimum holding period of at least 10 days.

Square-root-of-time rule:

\[\text{VaR}(1) \sqrt{\tau} = \text{VaR}(\tau). \]
Scaling

Premises of Square-Root-of-Time Rule
- independent and
- identically distributed (i.i.d.) returns process

Problem
Financial time series are not independent, because e.g. absolute or squared returns are highly correlated.

Consequences
- In the presence of long memory, it is not reasonable to scale by a fixed self-affinity parameter \((H = 0.5)\).
- The degree of risk misspecification depends both on the risk horizon and the magnitude of long range dependence.
GARCH-type VaR models are based on the assumption that empirical returns belong to a location-scale family of probability distributions of the form

\[R_t = \mu_t + \epsilon_t = \mu_t + Z_t \sigma_t. \]

The location \(\mu_t \) and the scale \(\sigma_t \) are \(\mathcal{F}_{t-1} \)-measurable parameters and \(Z_t \sim i.i.d. F(0, 1) \).
The one-day ahead GARCH VaR is obtained by

$$\text{VaR}^\alpha_{t,t+1} = \mu_{t+1} + \sigma_{t+1} F_{\alpha}^{-1},$$

where σ_{t+1} is the conditional standard deviation of R_t calculated by GARCH(1,1):

$$\sigma^2_{t+1} = \omega + \alpha \epsilon^2_t + \beta \sigma^2_t,$$

with $\omega > 0$, $\alpha \geq 0$, $\beta \geq 0$, $\alpha + \beta < 1$. When $\tau \to \infty$, the process σ^2_t is finite if and only if $\alpha + \beta < 1$, otherwise the process is non-stationary as $\sigma^2_t \to \infty$.
The multi-day ahead GARCH variance prediction is obtained by

\[\sigma^2_{t+\tau} = \mathbb{E}(\epsilon^2_{t+\tau} | F_t) = \sigma^2 + (\sigma^2_{t+1} - \sigma^2)(\alpha + \beta)^{\tau-1} \]

\(\sigma^2 \) denotes the unconditional variance of \(\epsilon_t \).

Drawbacks

- If the forecasting horizon \(\tau \) rises and \(\alpha + \beta < 1 \) then \(\sigma^2_t \rightarrow \sigma^2 \).
- All relative weights on past squared returns decline at the same exponential rate \((\alpha + \beta) \).
The **multi-day ahead** VaR prediction in the novel setting is given by

\[\text{VaR}_{t,t+\tau}^\alpha = \mu_{t+\tau} + \phi(t + \tau) F^{-1}_{\alpha}. \]

In contrast to GARCH-based VaR forecasts, we substitute \(\sigma_{t+\tau} \) by a scaling based variable \(\phi(t + \tau) \):

\[\phi(t + \tau) = \tau^H \rho_{|R_t|}(\tau)^{H-\rho_{|R_t|}(\tau)} \sigma_{t+1}. \]

- \(H \) corresponds to the Hurst exponent or self-affinity parameter.
- \(\rho_{|R_t|}(\tau) \) is the autocorrelation coefficient of \(|R_t| \) for the time-lag \(\tau \). Assumption: \(\rho_{|R_t|}(\tau) \neq 0 \).
Special Backtesting Issues

1. Which returns should be used?
 - **Overlapping returns**
 - **Con** Autocorrelation
 - **Pro** Backtesting criteria like Basel traffic light could be achieved easier as in case of non-overlapping returns.
 - **Non-overlapping returns**
 - **Pro** No autocorrelation

2. **Multi-day** VaR figures exhibit an additional backtesting problem.
 - Due to higher risk horizon τ, the spread of $R_{t,t+\tau}$ increases \Rightarrow the distance between $VaR_{t,t+\tau}$ and $R_{t,t+\tau}$ becomes more important in comparison to one-day ahead VaR.
The data contains 8,609 daily closing levels P_t from January 1, 1975 to December 31, 2007 of four international stock market indices:

- DAX
- Dow Jones
- Nasdaq Composite
- S&P 500

We use non-overlapping continuously compounded percentage returns $R_{t,t+\tau}$ for different sampling frequencies $\tau \in \{5, 10, 20, 60\}$ days.
In order to investigate the dependence structure of empirical returns, we calculate estimates of H for all indices, Brownian motion and test the null

- H_0: "$H = 0.5$" (no dependence) against
- H_1: "$H \neq 0.5$" (dependence).
Long Range Dependence

| Index | R_t | t-value | R_t^2 | t-value | $|R_t|$ | t-value |
|---------------|----------|---------|-----------|---------|----------|---------|
| DAX | 0.520 | 1.91* | 0.769 | 26.12 | 0.823 | 24.01 |
| DOW JONES | 0.476 | -1.94* | 0.614 | 8.32 | 0.769 | 19.99 |
| NASDAQ | 0.535 | 2.83 | 0.811 | 17.54 | 0.846 | 16.34 |
| S&P 500 | 0.478 | -1.95* | 0.632 | 9.87 | 0.780 | 18.72 |
| BM(8608) | 0.490 | -0.76* | 0.487 | -0.44* | 0.495 | -0.23* |

Table: Empirical estimates of the Hurst exponent H for daily index data from January 1, 1975 to December 31, 2007. A theoretical estimate for simulated ordinary Brownian motion with 8,608 increments is provided for 10,000 replications. * denotes accepting the null at the 95% confidence level.
Empirical Analysis

Long Range Dependence

Long Range Dependence

Figure: ACFs of absolute index returns. Sample period: January 1, 1975 to December 31, 2007.
VaR Forecasting Performance Results

DAX

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Distribution</th>
<th>GARCH</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 days</td>
<td>skewed-$t(3)$</td>
<td>VaR</td>
<td>6.16</td>
</tr>
<tr>
<td></td>
<td>% Viol.</td>
<td></td>
<td>14.86</td>
</tr>
<tr>
<td></td>
<td>LR_{uc}</td>
<td></td>
<td>40.37*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.000]</td>
</tr>
<tr>
<td></td>
<td>LR_{ind}</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.733]</td>
</tr>
<tr>
<td></td>
<td>LR_{cc}</td>
<td></td>
<td>40.47*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.000]</td>
</tr>
<tr>
<td></td>
<td>LF</td>
<td></td>
<td>31.47</td>
</tr>
</tbody>
</table>

Table: 60-day ahead VaR forecasts for the GARCH and GARCH-LM model with skewed t-distribution from January 1, 1991 to December 31, 2007. * denotes rejecting the null at the 99% confidence level.
Empirical Analysis

VAR Forecasting Performance Results

Skewed student-t distribution

(a) 5 days
(b) 10 days
(c) 20 days
(d) 60 days