How good are Portfolio Insurance Strategies?

S. Balder and A. Mahayni

Department of Accounting and Finance, Mercator School of Management, University of Duisburg–Essen

September 2009, München
Introduction and Motivation

- Increasing demand for insurance contracts which also serve as savings towards retirement
- Trade off between security of the retirement savings and participation in the market
- Solution provided to the insured:
 - Payoff of insurance linked to *underlying investment strategy*
 - *guaranteed interest rate*
- Product design: basically *structured insurance products* and CPPI based products
Motivation

Implications for risk management

- Risk management crucially depends on the underlying investment strategy

Perspective of insured

- Does the insured profit from products with capital guarantee?

⇒ When and why are CPPI (OBPI) strategies better than OBPI (CPPI) strategies?

⇒ Mitigate between expected utility maximization and the comparison of stylized strategies
Outline of the talk

- Review of the (well known) optimization problems yielding
 - constant mix,
 - CPPI
 - and OBPI strategies

- Comparison of the optimal strategies and resulting payoffs
- Discussion of some advantages (disadvantages) of the portfolio insurance methods
- Illustration of utility losses caused by the introduction of strictly positive terminal guarantees for a CRRA investor
 - effects of market frictions such as discrete–time trading, transaction costs and borrowing constraints
Model Setup

- Assumptions

\[
\begin{align*}
 d B_t &= B_t r \, dt, \quad B_0 = b \\
 d S_t &= S_t (\mu \, dt + \sigma \, dW_t), \quad S_0 = s
\end{align*}
\]

- \(W = (W_t)_{0 \leq t \leq T} \) standard Brownian Motion
- \(\mu, \sigma \) and \(r \) constant \((\mu > r \geq 0, \sigma > 0)\)

- Value Process \(V = (V_t)_{0 \leq t \leq T} \) of investment strategy \(\pi \)

\[
 dV_t(\pi) = V_t \left(\pi_t \frac{dS_t}{S_t} + (1 - \pi_t) \frac{dB_t}{B_t} \right), \quad V_0 = A
\]
Benchmark Optimization Problems

Optimization problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Utility Function</th>
<th>Additional Constraint</th>
<th>Optimal Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>$u_A(V_T) = \frac{V_T^{1-\gamma}}{1-\gamma}$</td>
<td>none</td>
<td>CM</td>
</tr>
<tr>
<td></td>
<td>unconstrained CRRA problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>$u_B(V_T) = \frac{(V_T - G_T)^{1-\gamma}}{1-\gamma}$</td>
<td>none</td>
<td>CPPI</td>
</tr>
<tr>
<td></td>
<td>subsistence level G_T (HARA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>$u_A(V_T) = \frac{V_T^{1-\gamma}}{1-\gamma}$</td>
<td>$V_T \geq G_T$</td>
<td>OBPI</td>
</tr>
<tr>
<td></td>
<td>constrained CRRA problem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal Payoffs

\begin{align*}
V_{T,A}^* &= \phi (V_0, m^*) S_T^{m^*} \\
V_{T,B}^* &= G_T + \alpha_B V_{T,A}^* \\
V_{T,C}^* &= \alpha_C V_{T,A}^* + \left[G_T - \alpha_C V_{T,A}^* \right]^+ \\

m^* &= \frac{\mu - r}{\gamma \sigma^2} \quad (\text{Merton investment quote}) \\
\text{Fractions } \alpha_B \text{ and } \alpha_C \text{ are} \\
\alpha_B &= \frac{V_0 - e^{-rT} G_T}{V_0} < \alpha_C = \frac{\tilde{V}_0}{V_0} < 1 \\
\text{Relation is also true w.r.t. more general model setups!}
\end{align*}
Motivation
Optimization Problems
Utility loss caused by guarantees
Discrete Trading and Transaction Costs

Model Setup
Benchmark Optimization Problems
Comparison of optimal payoffs
Illustration Optimal Payoffs

Link between payoffs

- V^*_T, A corresponds to $\phi(V_0, m^*)$ power claims with power m^* where the number $\phi(V_0, m^*)$ depends on
 - the initial investment
 - and the optimal investment weight m^*

- **Subsistence level** in (B) and terminal constraint in (C) imply
 - reduction of the number of power claims (to afford the risk–free investment which is necessary to honor the guarantee)
Link between strategies

- **CPPI strategy** is a
 - buy and hold strategy of a constant mix strategy
 - with an additional investment into G_T zero bonds

- **Solution of (C) (OBPI) is a**
 - buy and hold strategy of a constant mix strategy
 - with an additional investment into a put with strike G_T

→ Put is cheaper than G_T zero bonds such that one can buy and hold more CM strategies in the case of the option based approach
Parameter constellation

Basic parameter constellation

<table>
<thead>
<tr>
<th>model parameter</th>
<th>strategy parameter</th>
<th>terminal guarantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_0 = 1$</td>
<td>$V_0 = 1$</td>
<td>$G_T = 1$</td>
</tr>
<tr>
<td>$\sigma = 0.15$</td>
<td>$T = 10$</td>
<td></td>
</tr>
<tr>
<td>$r = 0.03$</td>
<td>$\gamma = 1.2$</td>
<td></td>
</tr>
<tr>
<td>$\mu = 0.085$</td>
<td>$m = m^* = 2.037$</td>
<td></td>
</tr>
</tbody>
</table>

Table: Basic parameter constellation.
Optimal payoffs $V^{*}_{T,A}$ (solid line), $V^{*}_{T,B}$ (dotted line) and $V^{*}_{T,C}$ (dashed line)
Remarks

- Intersection points with unconstrained solution
- Probability to end up with (only) the guarantee

 - OBPI payoff is equal to guarantee if the put expires out of the money
 - In contrast to the CPPI method, this implies a positive point mass for the event that the terminal value is equal to the guarantee
 → This can cause a high exposure to gap risk, i.e. the risk that the guarantee is violated, if market frictions are introduced.

- Loss from introducing the guarantee into the unconstrained setup
Loss rate

- Loss rate $l_{T,i}(\pi)$ of the strategy π and the utility function i ($i \in \{A, B, C\}$)

\[
l_{T,i}(\pi) := \frac{\ln \left(\frac{CE_{T,i}^*}{CE_{T,i}(\pi)} \right)}{T}
\]

where
- $CE_{T,i}^*$ denotes the certainty equivalent of the optimal strategy $\pi^*_i = (\pi_{t,i})_{0 \leq t \leq T}$
- $CE_{T,i}(\pi)$ the of the suboptimal strategy $\pi = (\pi_t)_{0 \leq t \leq T}$
Loss rates w.r.t. $u = u_A$ for CPPI (solid lines), OBPI (dashed) and CM (dotted) strategies with varying parameter m.
Motivation

Optimization Problems

Utility loss caused by guarantees
Discrete Trading and Transaction Costs

Utility loss caused by guarantees

- Loss rate

Illustration

Minimal loss rates (u_A–optimal strategy parameter m)

<table>
<thead>
<tr>
<th>strategy</th>
<th>$\gamma \setminus T$</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPPI</td>
<td>1.2</td>
<td>0.040 (11.32)</td>
<td>0.035 (7.83)</td>
<td>0.026 (4.91)</td>
<td>0.018 (3.57)</td>
<td>0.010 (2.73)</td>
</tr>
<tr>
<td>OBPI</td>
<td>1.2</td>
<td>0.037 (2.04)</td>
<td>0.031 (2.04)</td>
<td>0.022 (2.04)</td>
<td>0.014 (2.04)</td>
<td>0.007 (2.04)</td>
</tr>
<tr>
<td>CPPI</td>
<td>1.5</td>
<td>0.031 (10.60)</td>
<td>0.026 (7.25)</td>
<td>0.019 (4.45)</td>
<td>0.013 (3.16)</td>
<td>0.007 (2.36)</td>
</tr>
<tr>
<td>OBPI</td>
<td>1.5</td>
<td>0.028 (1.63)</td>
<td>0.023 (1.63)</td>
<td>0.015 (1.63)</td>
<td>0.009 (1.63)</td>
<td>0.005 (1.63)</td>
</tr>
<tr>
<td>CPPI</td>
<td>1.8</td>
<td>0.024 (10.03)</td>
<td>0.020 (6.80)</td>
<td>0.014 (4.10)</td>
<td>0.009 (2.86)</td>
<td>0.005 (2.08)</td>
</tr>
<tr>
<td>OBPI</td>
<td>1.8</td>
<td>0.021 (1.34)</td>
<td>0.017 (1.34)</td>
<td>0.011 (1.34)</td>
<td>0.007 (1.34)</td>
<td>0.004 (1.34)</td>
</tr>
</tbody>
</table>

Table: Minimal loss rates (u_A–optimal strategy parameter m) for varying T and γ where the other parameters are given as in Table 1.

S. Balder and A. Mahayni

How good are Portfolio Insurance Strategies? 15/20
• Concept of portfolio insurance is impeded by market frictions
• Asset exposure is reduced when the asset price decreases
• A sudden drop in the asset price where the investor is not able to adjust his portfolio adequately, causes a gap risk, i.e. the risk that the terminal guarantee is not achieved.
• Example: trading restrictions in the sense of discrete–time trading and transaction costs

Utility Loss
Gap risk measured by the shortfall probability
Loss rates: continuous–time CPPI (solid line), monthly CPPI without transaction costs (dashed lines) and monthly CPPI with $\theta = 0.01$ (dotted line)
Loss rates: continuous–time CPPI (solid line), monthly CPPI without transaction costs (dashed lines) and monthly CPPI with $\theta = 0.01$ (dotted line)
Distribution of discrete OBPI (CPPI) with transaction costs
Distribution of discrete OBPI (CPPI) with transaction costs
Conclusion

- Main difference between OBPI and CPPI can be explained by their link to constant mix strategies.
- It is also important to take into account the difference between kinked and smooth payoff–profiles.
- **Advantage of OBPI:**
 - Backing up the guarantee is cheaper than for CPPI (closer to unconstrained optimal).
- **Drawback of OBPI:**
 - Implementation is much more difficult than the one of CPPI.
 - Resulting strategies are sensitive against model risk and various sources of market incompleteness.
Thank you for your attention!