Multivariate analyses for modelling lapse risk capital charge under Solvency II

Alessandra Gambini
Matthew Edwards
Silvia Algarotti
Rocco Cerchiara
Multivariate analyses for modelling lapse risk capital charge under Solvency II
Agenda

• Introduction
 – Why investigating lapse risk capital charge
• Lapse Risk capital charge
 – Solvency II framework and its challenges
• Determining Lapse assumptions
 – Univariate
 – Multivariate – adopting a Generalised Modelling techniques
 – Multivariate dynamic – varying assumptions by simulation
• Case Study
 – Own Funds
 – Solvency Capital required
 – Key Observations
Introduction

Why investigating lapse risk?

• Capital charge for lapse risk is the biggest SCR in the life underwriting risk capital charge:
 – EU average life companies: 59%
 – EU average composite companies: 43%

• Own Funds are very sensitive to lapse assumptions, hence strong impact on solvency levels
 – Long dating evidence from MCEV analysis
Lapse risk capital charge
CP 26 and CEIOPS expectations

• High expectation from Solvency II legislation in terms of solidity of derivation and validation of best estimate and dynamic assumptions

• CP26:
 – Need to allow for uncertainty in best estimate assumptions, including policyholder behaviour and management responses
 – Assumptions should be validated and reviewed by insurance undertaking
Determining Lapse assumptions

• We will concentrate for the purposes of this presentation on work aimed at
 – Improvement of derivation of best estimate lapse assumptions using GLM techniques
 – Investigating the applicability of GLM techniques to investigate dynamic PH behaviour
 – Investigating impact on Own Funds and SCR
• We won’t deal
 – With the variability around best assumptions – which could be used to determine a distribution of irrational lapse behaviour and / or company specific lapse stress
 – With the improvement of aggregation methodologies for lapse risk
Determining Lapse assumptions

Case Study

- Case study based on an actual portfolio of a continental European bank insurance business
 - The products were participating life insurance savings policies, mostly (recurrent) single premium products, with guaranteed surrender values
- Policy data analysed
 - Observation from years 1991 – 2007
 - 6,129,000 exposure and 279,000 lapses
- Split of portfolio in product types, based on the interest rate guarantee level
 - High: 3% - 4% (35% of the reserves) (H)
 - Medium: 2.5% (42% of the reserves) (M)
 - Low: 0% (23% of the reserves) (L)
- The results presented here are to be understood ‘for illustration purposes’ only – are to be considered work in progress
Determining Lapse assumptions

Univariate lapse assumptions

Traditional approach

- For each product type (H, M, L) the average lapse frequency has been derived, distinguished by duration in force

Note:

- this is different from a 2-factor GLM model with the factors of guarantee and duration
Determining Lapse assumptions
Univariate lapse assumptions

<table>
<thead>
<tr>
<th>Duration</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,5%</td>
<td>0,2%</td>
<td>1,9%</td>
</tr>
<tr>
<td>1</td>
<td>0,5%</td>
<td>3,3%</td>
<td>6,0%</td>
</tr>
<tr>
<td>2</td>
<td>2,5%</td>
<td>3,7%</td>
<td>8,6%</td>
</tr>
<tr>
<td>3</td>
<td>3,2%</td>
<td>4,1%</td>
<td>7,7%</td>
</tr>
<tr>
<td>4</td>
<td>3,2%</td>
<td>4,4%</td>
<td>6,8%</td>
</tr>
<tr>
<td>5</td>
<td>6,7%</td>
<td>4,8%</td>
<td>5,8%</td>
</tr>
<tr>
<td>6</td>
<td>5,9%</td>
<td>5,2%</td>
<td>4,9%</td>
</tr>
<tr>
<td>7</td>
<td>5,2%</td>
<td>5,6%</td>
<td>4,0%</td>
</tr>
<tr>
<td>8</td>
<td>4,5%</td>
<td>6,0%</td>
<td>4,0%</td>
</tr>
<tr>
<td>9</td>
<td>3,8%</td>
<td>6,3%</td>
<td>3,1%</td>
</tr>
<tr>
<td>10</td>
<td>3,1%</td>
<td>6,3%</td>
<td>2,2%</td>
</tr>
<tr>
<td>>=11</td>
<td>1,4%</td>
<td>6,3%</td>
<td>1,4%</td>
</tr>
</tbody>
</table>
Determining Lapse assumptions

Multivariate lapse assumptions

- Multivariate assumption, based on the adoption of Generalised Linear Modelling (GLM) Techniques
- What are GLMs?
 - A method that can model
 - a number
 as a function of
 - some factors
 - For instance, a GLM can model
 - Motor claim frequency as a function of driver age, car type, bonus malus …
 - Policyholder lapse/surrender probability (L or NL)
 - Policyholder mortality (L)
 - Historically associated with non-life personal lines pricing
Determining Lapse assumptions

Case study: predictive factors

- The risk factors available for our analysis were:
 - Product classified by minimum guaranteed rate
 - Year of event
 - Duration
 - Age
 - Sex

- Key predictive factors
 - **Duration** – highly predictive, and the GLM shows this factor to have more effect in explaining lapse/surrender behaviour than would be apparent from a one-way analysis.
 - **Minimum guarantee** of the tariff
 - **Age** (although a relatively minor effect)
 - Interactions between some of these factors were significant
 - **Calendar year** of exposure is highly significant but using this in a predictive way is not straight-forward
 - **Difference** between the insurer’s *fund book yield* and *long-term government yields*

- Non-predictive factors
 - **Sex**

Note: see Cerchiara, Edwards, Gambini, AFIR 2008
Effect of policyholder age

Unsmoothed estimate

Approx 95% confidence interval

P value = 0.0%

Rank 1/3

Corporate

0-39

40-59

60-79

80+

P value = 0.0%

Rank 1/3

Effect of policyholder age

Log of multiplier

Coverage

Approx 95% confidence interval

Unsmoothed estimate

P value = 0.0%

Rank 1/3

Corporate

0-39

40-59

60-79

80+

P value = 0.0%

Rank 1/3

Effect of policyholder age

Log of multiplier

Coverage

Approx 95% confidence interval

Unsmoothed estimate

P value = 0.0%

Rank 1/3

Corporate

0-39

40-59

60-79

80+

P value = 0.0%

Rank 1/3

Effect of policyholder age

Log of multiplier

Coverage

Approx 95% confidence interval

Unsmoothed estimate

P value = 0.0%

Rank 1/3

Corporate

0-39

40-59

60-79

80+

P value = 0.0%

Rank 1/3
Sex – not significant

P value = 20.7%
Determining Lapse assumptions

Case study: predictive factors

- **Formula**
 - **Base** level = 6.3% exposure weighted average rate
 - **Factor** duration (1 – 11+)

<table>
<thead>
<tr>
<th>Factor Level</th>
<th>0</th>
<th>1</th>
<th>1.4</th>
<th>1.13</th>
<th>0.84</th>
<th>0.84</th>
<th>0.62</th>
<th>0.46</th>
<th>0.46</th>
<th>0.22</th>
<th>0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>0.30</td>
<td>1</td>
<td>1.4</td>
<td>1.13</td>
<td>0.84</td>
<td>0.84</td>
<td>0.62</td>
<td>0.46</td>
<td>0.46</td>
<td>0.22</td>
<td>0.07</td>
</tr>
</tbody>
</table>

- **Factor** guarantee (L (0% - 2.5%), M (3%), H (4%))

<table>
<thead>
<tr>
<th>Factor Guarantee</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (4%)</td>
<td>1.7821</td>
</tr>
<tr>
<td>M (3%)</td>
<td>1.0000</td>
</tr>
<tr>
<td>L (0 – 2.5%)</td>
<td>1.0164</td>
</tr>
</tbody>
</table>

- **Factor** age (0-39, 40 – 59, 60*)

<table>
<thead>
<tr>
<th>Factor Age</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -39</td>
<td>1.064</td>
</tr>
<tr>
<td>40 – 59</td>
<td>0.986</td>
</tr>
<tr>
<td>60+</td>
<td>0.915</td>
</tr>
</tbody>
</table>
Determining Lapse assumptions
Results for High guarantee products

<table>
<thead>
<tr>
<th>Guarantee</th>
<th>Duration</th>
<th>Under 40</th>
<th>Under 60</th>
<th>Over 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH</td>
<td>Univariate</td>
<td>Multivariate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0,5%</td>
<td>3,6%</td>
<td>3,32%</td>
<td>3%</td>
</tr>
<tr>
<td>1</td>
<td>0,5%</td>
<td>11,9%</td>
<td>11%</td>
<td>10%</td>
</tr>
<tr>
<td>2</td>
<td>2,5%</td>
<td>16,7%</td>
<td>15%</td>
<td>14%</td>
</tr>
<tr>
<td>3</td>
<td>3,2%</td>
<td>13,5%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>4</td>
<td>3,2%</td>
<td>10,0%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>5</td>
<td>6,7%</td>
<td>10,0%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>6</td>
<td>5,9%</td>
<td>7,4%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>7</td>
<td>5,2%</td>
<td>5,5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>8</td>
<td>4,5%</td>
<td>5,5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>9</td>
<td>3,8%</td>
<td>5,5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>10</td>
<td>3,1%</td>
<td>2,7%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>11 +</td>
<td>1,4%</td>
<td>0,8%</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>
Determining Lapse Assumptions

Results for Medium guarantee products

<table>
<thead>
<tr>
<th>Guarantee Duration</th>
<th>Univariate</th>
<th>MEDIUM Univariate</th>
<th>MEDIUM Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Under 40</td>
<td>Under 60</td>
</tr>
<tr>
<td>0</td>
<td>0,5%</td>
<td>2%</td>
<td>1,89%</td>
</tr>
<tr>
<td>1</td>
<td>0,5%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>2</td>
<td>2,5%</td>
<td>10%</td>
<td>9%</td>
</tr>
<tr>
<td>3</td>
<td>3,2%</td>
<td>8%</td>
<td>7%</td>
</tr>
<tr>
<td>4</td>
<td>3,2%</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>5</td>
<td>6,7%</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>6</td>
<td>5,9%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>7</td>
<td>5,2%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>8</td>
<td>4,5%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>9</td>
<td>3,8%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>10</td>
<td>3,1%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>11 +</td>
<td>1,4%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Determining Lapse assumptions

Results for Low guarantee products

<table>
<thead>
<tr>
<th>Guarantee</th>
<th>Duration</th>
<th>Univariante LOW</th>
<th>Multivariante LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Under 40</td>
<td>Under 60</td>
<td>Over 60</td>
</tr>
<tr>
<td>0</td>
<td>0,5%</td>
<td>2%</td>
<td>1,86%</td>
</tr>
<tr>
<td>1</td>
<td>0,5%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>2</td>
<td>2,5%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>3</td>
<td>3,2%</td>
<td>8%</td>
<td>7%</td>
</tr>
<tr>
<td>4</td>
<td>3,2%</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>5</td>
<td>6,7%</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>6</td>
<td>5,9%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>7</td>
<td>5,2%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>8</td>
<td>4,5%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>9</td>
<td>3,8%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>10</td>
<td>3,1%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>11 +</td>
<td>1,4%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Determining Lapse assumptions

Key Observations:

• One dataset analysed in different ways can give rise to very different lapse assumptions, both in the shape and the level
 – We observe here that multivariate assumptions seem on average higher (the average of univariate assumption is 3%, the average of multivariate is 4% for L and M, 7% for H)
 – The shape of the assumptions might be different as well, for example here the duration effect varies (where the maximum is, and how ‘high’ the maximum is)

• Some other points:
 – As expected younger policyholders tend to exhibit a higher propensity to lapse
 – High guarantees show an apparently higher propensity to lapse – this is not intuitive and hides a significant movement by calendar year
Lapse assumptions & Solvency II
Case study

• We have analysed the impact of multivariate lapse assumptions on the own fund level, SCR and Solvency Ratio of our case study

• Stochastic model:
 – very simple approach, only explanatory purposes
 – 1,000 risk-neutral simulations
 – Bonus driven by achieved book return on the WP fund
 – Constant asset allocation and new investment in cash
 – Yearly alignment of Book Values of Assets to local GAAP mathematical reserves
 – No Surplus assets in the model
 – Results produced with Watson Wyatt proprietary software

The results presented here are to be understood ‘for illustration purposes’ only – are to be considered work in progress
Lapse assumptions & Solvency II

Case study

• “Own funds”
 – Defined as excess MVA less Best Estimate Liabilities
 – Ignoring Risk Margins
 – Deferred taxes are part of the Best Estimate Liabilities

• SCR estimated according to a simplified version of QIS4 standard formula, in particular
 – Up and down stress applied on all simulations and not only those having a positive / negative surrender strain
 – Mass lapses have been ignored
 – … consequently potential underestimation of lapse capital charge

• Aggregation according to the correlation matrix used in the QIS4
Lapse assumptions & Solvency II
Case study

Mathematical Reserves by guarantee
Lapse assumptions & Solvency II
Case study

Markt Value asset

- Bond: 54%
- Cash: 34%
- Equity: 12%

UGL= 79

UGL= 156

URG approx. 2.5% of MVA
Lapse assumptions & Solvency II
Case study: Own Funds

Univariate Own Funds = 2.9% of MVA

- MVA = 10,000
- Own Funds = 290
- DTL = 380
- BEL = 9,411

Multivariate Own Funds = 0.56% of MVA

- MVA = 10,000
- Own Funds = 56
- DTL = 360
- BEL = 9,584
Lapse assumptions & Solvency II

Case study: SCR

<table>
<thead>
<tr>
<th></th>
<th>UNIVARIATE</th>
<th>MULTIVARIATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR UNDIVERSIFIED</td>
<td>387,77</td>
<td>341,19</td>
</tr>
<tr>
<td>Interest rate risk</td>
<td>181,85</td>
<td>112,97</td>
</tr>
<tr>
<td>Equity risk</td>
<td>91,50</td>
<td>117,68</td>
</tr>
<tr>
<td>Lapse risk</td>
<td>114,42</td>
<td>110,54</td>
</tr>
<tr>
<td>SCR DIVERSIFIED</td>
<td>257,25</td>
<td>218,74</td>
</tr>
<tr>
<td>diversification effect</td>
<td>34%</td>
<td>36%</td>
</tr>
</tbody>
</table>
Lapse assumptions & Solvency II

Key Observations on moving from traditional basis to GLM assumptions

• Own Funds show a higher degree of sensitivity to the change to a multivariate lapse approach than the SCR
 – Own funds fall from 2.9% of MVA to 0.56% of MVA
 – SCR diversified falls from 2.57% to 2.19% of MVA

• The change to a multivariate lapse assumptions has a bigger impact on market SCR than on lapse SCR
 – Reduces overall SCR market capital charge
 – Increases weight of equity SCR from 24% to 35%
Lapse assumptions & Solvency II
Dynamic behaviour

• The ability to model interactions in particular can assist in understanding policyholder behaviour from the perspective of relationships with market movements
• We combine the concept of an interaction with the use of external data
• The first graph shows the dependence of the surrender frequency from the calendar year of exposure
• The second graph uses the product guarantee * calendar year of exposure interaction to show how the surrender rate seems to vary according to high or low guarantee levels
 – For low guarantees, market decreases lead to increased surrenders in a fairly linear manner
 – For high guarantees, market decreases seem to lead to decreased surrenders – perhaps because policyholders value their guarantees more
Determining Lapse assumptions

Dynamic lapses: Calendar Year of exposure

Determining Lapse assumptions

Dynamic lapses

• The ability to model interactions in particular can assist in understanding policyholder behaviour from the perspective of relationships with market movements
• We combine the concept of an interaction with the use of external data
• The first graph shows the dependence of the surrender frequency from the calendar year of exposure
• The second graph uses the product guarantee * calendar year of exposure interaction to show how the surrender rate seems to vary according to high or low guarantee levels
 – For low guarantees, market decreases lead to increased surrenders in a fairly linear manner
 – For high guarantees, market decreases seem to lead to decreased surrenders – perhaps because policyholders value their guarantees more
Determing Lapse assumptions

Dynamic lapses: Calendar Year of exposure x product
Determining Lapse assumptions

Dynamic lapses

Key observations:

• Clear evidence of dependence of lapse rate from calendar year and level of guarantees
 – Could suffer impact of contingent events, hence
 – …. difficult to extrapolate for the future

• Looking for an approach, which at the same time captures the path dependency of lapses, but is less contingent to specific calendar years, hence better suitable for predictive purposes
 – Investigate the risk factor “yield – guarantee”
 – Demonstrates close confidence intervals around estimation
Determining Lapse assumptions

Dynamic lapses: Factor based on \(\{\text{yield} - \text{guarantee}\}\)

<table>
<thead>
<tr>
<th>Yield minus guarantee</th>
<th>Log of multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td><= -0.64%</td>
<td>0</td>
</tr>
<tr>
<td>-0.64% - 0.86%</td>
<td>0</td>
</tr>
<tr>
<td>0.86% - 1.28%</td>
<td>0</td>
</tr>
<tr>
<td>1.28% - 1.64%</td>
<td>0</td>
</tr>
<tr>
<td>1.64% - 1.86%</td>
<td>0</td>
</tr>
<tr>
<td>1.86% - 2.64%</td>
<td>0</td>
</tr>
<tr>
<td>2.64% - 3.5%</td>
<td>0</td>
</tr>
<tr>
<td>3.5% - 4.57%</td>
<td>0</td>
</tr>
<tr>
<td>4.57% - 7.01%</td>
<td>0</td>
</tr>
<tr>
<td>> 7.01%</td>
<td>0</td>
</tr>
</tbody>
</table>

Exposure (years)

- 0
- 100,000
- 200,000
- 300,000
- 400,000
- 500,000
- 600,000
- 700,000
- 800,000
- 900,000
- 1,000,000
- 1,100,000
- 1,200,000
- 1,300,000
- 1,400,000
- 1,500,000
- 1,600,000
- 1,700,000
- 1,800,000
- 1,900,000
- 2,000,000
- 2,100,000
- 2,200,000
- 2,300,000
- 2,400,000
- 2,500,000

Yield minus guarantee

Unsmoothed estimate

Approx 95% confidence interval

Oneway relativities

P value = 0.0%
Determining Lapse assumptions

Dynamic lapses

- Adding risk factor “yield – guarantee”, we obtain the following new factors, adjusting the GLM formula

<table>
<thead>
<tr>
<th>Factor yield – less guarantee</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.25%</td>
<td>0.8835</td>
</tr>
<tr>
<td>0.25%-1.25%</td>
<td>1.0346</td>
</tr>
<tr>
<td>1.25%-3.5%</td>
<td>1.1557</td>
</tr>
<tr>
<td>3.5% +</td>
<td>0.8263</td>
</tr>
</tbody>
</table>
Lapse assumptions & Solvency II
Case study: Dynamic behaviour & Own Funds

Univariate

- MVA = 10,000
- NAV = 290
- DTL = 380
- BEL = 9,411

Multivariate

- MVA = 10,000
- NAV = 56
- DTL = 360
- BEL = 9,584

Multivariate dynamic

- MVA = 10,000
- NAV = 64
- DTL = 363
- BEL = 9,573
Lapse assumptions & Solvency II
Case study: Dynamic behaviour & SCR

Univariate - SCR

- Interest rate risk: 30%
- Equity risk: 24%
- Lapse risk: 46%

Multivariate - SCR

- Interest rate risk: 32%
- Equity risk: 33%
- Lapse risk: 35%

Multivariate Dynamic - SCR

- Interest rate risk: 32%
- Equity risk: 34%
- Lapse risk: 34%
Lapse assumptions & Solvency II

Case study: Dynamic behaviour & SCR

<table>
<thead>
<tr>
<th></th>
<th>UNIVARIATE</th>
<th>MULTIVARIATE</th>
<th>MULTIVARIATE DYNAMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDIVERSIFIED</td>
<td>387,77</td>
<td>341,19</td>
<td>323,88</td>
</tr>
<tr>
<td>Interest rate risk</td>
<td>181,85</td>
<td>112,97</td>
<td>109,77</td>
</tr>
<tr>
<td>Equity risk</td>
<td>91,50</td>
<td>117,68</td>
<td>110,75</td>
</tr>
<tr>
<td>Lapse risk</td>
<td>114,42</td>
<td>110,54</td>
<td>103,35</td>
</tr>
<tr>
<td>SCR DIVERSIFIED</td>
<td>257,25</td>
<td>218,74</td>
<td>207,50</td>
</tr>
<tr>
<td>diversification effect</td>
<td>34%</td>
<td>36%</td>
<td>36%</td>
</tr>
</tbody>
</table>
Lapse assumptions & Solvency II
Key Observations

• Relatively small impact on lapse SCR, compared to the change from univariate to multivariate
• All relative movements are of a similar relative magnitude (own funds, scr div, scr lapse, scr market)
Problems and challenges with dynamic policyholder behaviour modelling

• Any dataset is based on a certain range of economic/investment conditions, how can we reasonably model movements outside that range?
• How to model irrational policyholder behaviour?
• Insights from other fields? (Retail banking market; non life work offers insight on some aspects of PH behaviour but not on investment aspect
• How should dynamic management decisions link in with dynamic policyholder behaviour?
Multivariate analyses for modelling lapse risk capital charge under Solvency II

Alessandra Gambini
Matthew Edwards
Silvia Algarotti
Rocco Cerchiara