Cautionary remarks about conclusions from the observation of record-life expectancy

IAA Life Colloquium 2009

Guido Grützner
München, September 7th, 2009
Cautionary remarks about conclusions from the observation of record-life expectancy

- Introduction
 - Simulation results
 - Record-life expectancy as forecast-tool
 - Conclusions
Introduction & some definitions

Definitions used in the talk

- Life expectancy (LE) is the expected number of further years of life.
- We study the time-development of specific LEs of nations or countries.
- The record LE in a year is the maximal specific LE of all countries in scope.
- LEs are seen as stochastic processes or time-series.
- We study the slopes of the regression line of specific and record LE processes.

Note: The LE definition of Oeppen&Vaupel is period LE at birth.

What to expect from this presentation

■ Questions raised and (partially) answered
 - What can record LE tell us about LEs specific for a country?
 - What are drivers of record LE beyond specific LE improvements?
 - What issues need to be addressed before record LE can be used to forecast specific LEs?

■ Tenor:
 - Record LE is a biased estimator of specific LEs
 - Inference on specific LEs needs to control all parameters driving the bias
 - Some of those parameters are only marginally relevant to LE development
 - To use record LE in forecasting you need a detailed model of the dependency-structure of global LE improvements
The basic issue – in a nutshell

- **Country A**: current LE is 58 years
 - LE has equal chance of moving up or down 3 month next year
 - Expected improvement is zero or no systematic trend

- **Country B**: same probabilities as A and independent

- **Record LE of A and B?**
 - Probability of moving up: 3/4
 - Probability of moving down: 1/4

- **Record LE is “biased” i.e. it overstates the expected LEs of “A” and “B”**
Drivers of bias

- The simple example is already sufficient to demonstrate some key effects and drivers
 - If three countries participate the probability of “up” is already 7/8
- Number of countries: Increases bias
 - Can be demonstrated in the 2-stage tree: If outcome of B does depend on outcome of A
- Simple correlation: Decreases bias
 - Needs multi-step consideration but is still straightforward
- Initial difference of LEs: Larger initial difference lowers the bias but it is still there
Cautionary remarks about conclusions from the observation of record-life expectancy

- Introduction
- Simulation results
 - Record-life expectancy as forecast-tool
 - Conclusions
The simulation laboratory

- Our goal is to demonstrate potential issues with record LE. So we strive for a simple model which is rich enough to show the effects.

- LE simulations are based on mortality rates from a Lee-Carter model\(^1\)
 - Force of mortality: \(\mu(x,t) = \alpha_x + \beta_x \cdot \kappa_t \)
 - \(\alpha_x \) and \(\beta_x \) from England&Wales population data, males, 1978-2007
 - Stochastic time/series \(\kappa_t \), modelled as random walk with drift:
 \[\kappa_t - \kappa_{t-1} = d + \varepsilon_t \quad \text{with} \quad \varepsilon_t \text{ iid, } \varepsilon_t \sim N(0, \sigma) \]

- Effects can be studied by systematic variation of parameters governing the stochastic properties
 - Drift, volatility, number of time series/countries, correlation-structure

- Reasonable range of variation is fixed by comparison to historic mortality data

- For practical reasons: LEs start with age 20 and are curtailed at 90.

1) see Lee-Carter (1992) or Cairns et.al. (2007)
Simulated LEs - first example

- Generate stochastic mortality rates
- Choose a number of "countries" (i.e. Time series)
- Calculate for each time \(t \) specific LEs and their record LE

- 5 time series or "countries"
- 50 periods simulated
- Drift is zero
- Random walks are uncorrelated
- Record LE outlined in black
- Different time series make up the record LE line
The record LE regression line

Regress record LE over time to find the slope of record LE

- Time series same as before
- But regression lines are included
- Sampled is one concrete outcome
- Different samples will have different regression lines
Improvements from nowhere

- Repeat sufficiently often to find the **distribution** of slopes of record LEs
- With sufficient countries record LE will show positive slope
- So the record LE shows improvement although all specific LEs have no drift

<table>
<thead>
<tr>
<th>number of countries</th>
<th>Mean slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.1%</td>
</tr>
<tr>
<td>2</td>
<td>1.5%</td>
</tr>
<tr>
<td>5</td>
<td>2.9%</td>
</tr>
<tr>
<td>10</td>
<td>3.8%</td>
</tr>
<tr>
<td>25</td>
<td>4.9%</td>
</tr>
<tr>
<td>50</td>
<td>5.5%</td>
</tr>
</tbody>
</table>

Nsim=5000
No rho, no drift, vola standard
start = +.3%
Main_sim.m
Potential amount of bias in record LE

More realistic scenarios varying underlying drift and volatility
There is indeed a possibility of material bias!

- Comparison with data from the human mortality database
 1) see www.mortality.org

- Assumptions on drift and volatility chosen to be reasonable in comparison to 1950-2003 data
 - Historic drift between -0.5 and -1.5 (E&W: -1.1)
 - Standard deviation varies between 90% to 105% of E&W values
 - Initial dispersion of starting positions +/- 3% of average LE 2003: 57 years

<table>
<thead>
<tr>
<th>kappa drift</th>
<th>kappa volatility (of E&W)</th>
<th>specific LE slope</th>
<th>record LE slope</th>
<th>over-statement due to bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90%</td>
<td>0%</td>
<td>5%</td>
<td>NA</td>
</tr>
<tr>
<td>0</td>
<td>100%</td>
<td>0%</td>
<td>5%</td>
<td>NA</td>
</tr>
<tr>
<td>0</td>
<td>105%</td>
<td>0%</td>
<td>6%</td>
<td>NA</td>
</tr>
<tr>
<td>-0.5</td>
<td>90%</td>
<td>8%</td>
<td>12%</td>
<td>43%</td>
</tr>
<tr>
<td>-0.5</td>
<td>100%</td>
<td>8%</td>
<td>12%</td>
<td>47%</td>
</tr>
<tr>
<td>-0.5</td>
<td>105%</td>
<td>8%</td>
<td>12%</td>
<td>49%</td>
</tr>
<tr>
<td>-1</td>
<td>90%</td>
<td>15%</td>
<td>17%</td>
<td>14%</td>
</tr>
<tr>
<td>-1</td>
<td>100%</td>
<td>15%</td>
<td>17%</td>
<td>15%</td>
</tr>
<tr>
<td>-1</td>
<td>105%</td>
<td>15%</td>
<td>17%</td>
<td>16%</td>
</tr>
<tr>
<td>-1.5</td>
<td>90%</td>
<td>20%</td>
<td>20%</td>
<td>4%</td>
</tr>
<tr>
<td>-1.5</td>
<td>100%</td>
<td>20%</td>
<td>20%</td>
<td>4%</td>
</tr>
<tr>
<td>-1.5</td>
<td>105%</td>
<td>20%</td>
<td>20%</td>
<td>4%</td>
</tr>
</tbody>
</table>

nsim = 5000, nperiod = 50
rho = 3%, eps_init = +/- 3%
bias_estimate.m
How much bias in reality?

- The analysis presented is obviously not conclusive. So we do not know the true current or historic bias in record LE
- Some obvious missing points are:
 - Young and old ages are excluded
 - Only England & Wales data was used for Lee-Carter parameters
 - Static analysis i.e. parameters are fixed in advance
 - Extremely simple dependency: Multivariate normal random walk
- What is the role of the Lee-Carter model?
 - We do not claim that Lee-Carter is a particular good model for this
 - The claim is indeed: It doesn’t matter which model you use
 - Lee-Carter is just a convenient way to generate stochastic mortality rates
- Remember the nutshell example: Volatility => Bias of record LE
Further examples and conclusion

- To decide on bias ALL parameters influencing the joint distribution need to be measured or at least their materiality estimated.

- Example: Dynamic changes
 - Number of countries in scope: probably growing over time?
 - Changes in drift: catch-up to leading countries will lead to clustering, i.e. increased bias due to less differences between leaders
 - More complicated dependency, auto-regression of drift and error, changing volatility

- As long as there is no evidence to the contrary it is safer to assume an unknown but potentially material bias in the slope of record LE.
Cautionary remarks about conclusions from the observation of record-life expectancy

- Introduction
- Simulation results
- Record-life expectancy as forecast-tool
- Conclusions
Record LE as forecasting-tool

- Record LE could be used to forecast specific LEs
- General idea
 - 1) Express any specific LE as a function of the record LE
 - 2) Forecast the record LE
 - 1) and 2) will give you immediately a forecast of your specific LE
- Example: specific LE = record LE - gap (Andreev, Vaupel 2006)

Problem:
- Bias in record LE is transferred to specific LE
- Consistency is not ensured: If all countries had the same slope as record LE the record LE were different!
Are other approaches viable?

- More complex approaches have been suggested
 - Lee (2006): Gap is not constant but decreases linearly over time
 - Torri (2008): Gap follows a stochastic process

- But any approach based on record LE is a potential victim of transfer of bias and lack of internal consistency

- Part of any proposed model should be a discussion of the consistency of assumptions between specific LE and measured/forecasted record LE
 - This most likely requires a description/analysis of the full dependency structure of all specific LEs involved

- Taking this complexity into account will limit the appeal of simplicity of the record LE approach.
Cautionary remarks about conclusions from the observation of record-life expectancy

- Introduction
- Simulation results
- Record-life expectancy as forecast-tool
- Conclusions
Conclusions

- Slope of record LE is a biased estimator of slope of any specific LE.
 - This is a mathematical property of the maximum of random variables and is not particular to human longevity or its temporal development.
 - Strength of bias is influenced by a potentially wide range of parameters.
 - Some of those parameters might only be marginally related to human longevity like e.g. the number of countries in scope.

- When forecasting based on the slope of record LE,
 - Care should be taken to prevent transfer of any bias from the record LE to the specific LE to be forecasted.
 - Assumptions on the relationship between the forecasted specific LEs and their ensuing record LE should be checked for consistency.

- Record LE is not a simple measure and analysing/controlling all influence factors will probably reduce its appeal of simplicity.
Contact details

- You are welcome to send any questions, remarks and your opinion on the matter to

 guidogruetzner@secquaero.com

- You might also want to check out my company’s website (our main focus is somewhat different though)

 http://www.secquaero.com
Cautionary remarks about conclusions from the observation of record-life expectancy
Some sources and further reading

- Oeppen&Vaupel

 - Forecasts of Cohort Mortality after Age 50. Working paper, Max Planck Institute for Demographic Research, Rostock, Germany.

- Torri, Tiziana (2008)
Development of some selected LEs

Source of data: Human Mortality Database (www.mortality.org) and own calculations
Parameters

Parameters to vary and their implementation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of countries</td>
<td>Number of random mortality processes/LEs simulated</td>
</tr>
<tr>
<td>Initial dispersion of LE</td>
<td>Factor applied to the LE process</td>
</tr>
<tr>
<td>Drift/Slope of LE</td>
<td>Parameter of κ_t distribution</td>
</tr>
<tr>
<td>Volatility of LE</td>
<td>Parameter of κ_t distribution</td>
</tr>
<tr>
<td>Correlation of LE</td>
<td>Parameter of κ_t distribution</td>
</tr>
</tbody>
</table>
Sample data used for comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS</td>
<td>17%</td>
<td>8%</td>
<td>57.9</td>
</tr>
<tr>
<td>FR</td>
<td>15%</td>
<td>10%</td>
<td>55.7</td>
</tr>
<tr>
<td>JAP</td>
<td>23%</td>
<td>10%</td>
<td>57.8</td>
</tr>
<tr>
<td>NOR</td>
<td>7%</td>
<td>5%</td>
<td>56.9</td>
</tr>
<tr>
<td>RUS</td>
<td>-15%</td>
<td>63%</td>
<td>39.7</td>
</tr>
<tr>
<td>TAI</td>
<td>17%</td>
<td>3%</td>
<td>54.5</td>
</tr>
<tr>
<td>SPA</td>
<td>14%</td>
<td>24%</td>
<td>56.1</td>
</tr>
<tr>
<td>SWI</td>
<td>15%</td>
<td>5%</td>
<td>57.7</td>
</tr>
<tr>
<td>ITA</td>
<td>14%</td>
<td>11%</td>
<td>57.1</td>
</tr>
<tr>
<td>USA</td>
<td>13%</td>
<td>4%</td>
<td>54.9</td>
</tr>
<tr>
<td>BEL</td>
<td>12%</td>
<td>7%</td>
<td>55.4</td>
</tr>
<tr>
<td>BUL</td>
<td>-4%</td>
<td>42%</td>
<td>49.9</td>
</tr>
<tr>
<td>EST</td>
<td>-5%</td>
<td>48%</td>
<td>46.7</td>
</tr>
<tr>
<td>ICE</td>
<td>12%</td>
<td>61%</td>
<td>59.0</td>
</tr>
<tr>
<td>IRE</td>
<td>11%</td>
<td>20%</td>
<td>55.8</td>
</tr>
<tr>
<td>LIT</td>
<td>-10%</td>
<td>42%</td>
<td>46.8</td>
</tr>
<tr>
<td>NTH</td>
<td>6%</td>
<td>5%</td>
<td>56.3</td>
</tr>
<tr>
<td>NZ</td>
<td>12%</td>
<td>9%</td>
<td>57.1</td>
</tr>
<tr>
<td>POL</td>
<td>1%</td>
<td>19%</td>
<td>50.8</td>
</tr>
<tr>
<td>SWE</td>
<td>10%</td>
<td>4%</td>
<td>57.6</td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td></td>
<td>54.2</td>
</tr>
<tr>
<td>w/o negative</td>
<td></td>
<td></td>
<td>56.7</td>
</tr>
</tbody>
</table>

Source of data:
- Mortality tables: Human Mortality Database (www.mortality.org)
- Derived values: own calculations
Lee Carter parameters

- Based on ONS Data
- England and Wales male population
- Calibration on years 1978 - 2007

Drift of kappa: -1.1
Standard deviation of ϵ: 1.4