ACTUARIAL ANALYSIS OF THE MULTIPLE LIFE ENDOWMENT INSURANCE CONTRACT

3rd International IAA Life Colloquium, Munich, Sept 6-9, 2009

Werner Hürlimann
FRSGlobal Switzerland
Bederstrasse 1, CH-8027 Zürich
E-mail: werner.huerlimann@frsglobal.com
AGENDA

• Modeling issues
 • general life status / single, joint, last-survivor & term
 • two-life status / survival probabilities

• Technical issues
 • premiums / term life / endowment / annuity
 • reserves / state dependent / state independent
 • premium components / state dependent / independent

• Computational issues
 • reduction formulas / term life / insurance / annuity
 • independence assumption / Höffding-Fréchet bounds
Modeling / general life status

• Random future lifetime of a general life status (u)

 consider group of g lives aged x(1), x(2), …, x(g)
 T[k]=T[x(k)] : future lifetime of single life aged x(k)
 T=T[u] : future lifetime of a status (u) on this group
 p(t,u)=P(T[u]>t) : probability of survival to time t>0
 q(t,u)=P(T[u]≤t) : probability of failure to time t>0

• single life status : u with T[u]=T[x] for single life aged x
• joint-life status : u with T[u]=min{T[1],…,T[g]}
• last survivorship : u with T[u]=max{T[1],…,T[g]}
• term certain : u with deterministic T[u]=n an integer
Modeling / two-life status

• Survival probabilities

two lives aged x, y, with random age-at-deaths X, Y
T[x]=X−x, T[y]=Y−y : random future lifetimes of (x), (y)
S(x,y)=P(X>x,Y>y) : joint survival function of (X,Y)

• joint-life status : u=x:y with T[u]=min{T[x],T[y]}
p(t,u)=P(T[u]>t) = S(x+t,y+t) / S(x,y)

• last survivorship : u′=(x:y)′ with T[u′]=max{T[x],T[y]}
p(t,u′)=P(T[u′]>t) = {S(x+t,y) + S(x,y+t) − S(x+t,y+t)} / S(x,y)

• independence : p(t,u) = p(t,x)·p(t,y)

• partial independence : p(t,u) = p(t,u′) – p(t,x) – p(t,y)
Technical / net single premiums

• **n-year term life insurance**
 \[D(m,u:n) \] : NSP for one unit of benefit payable at the end of the m-thly period of a year after failure of status \(u \)

• **n-year pure endowment**
 \[E(u:n) \] : NSP payable at survival of status \(u \)

• **n-year endowment**
 \[A(m,u:n) = D(m,u:n) + E(u:n) \] : NSP for status \(u \)

• **n-year life annuity**
 \[a(c,u:n) \] : NSP for one unit of benefit per year payable in installments of \(c \) fractional units at beginning of each payment cycle of length \(c \) as long as status \(u \) survives
Technical / level premiums

- net level premium of n-year endowment (NLP)
 \[\text{NLP}(m,c,u:n) = \frac{A(m,u:n) \cdot \text{SI}}{a(c,u:n)} : \]
 NLP with benefit SI for status u

- level premium of n-year endowment (LP)
 acquisition costs : rate \(\alpha \) of sum insured
 premium proportional operating costs : rate \(\beta v \)
 constant operating costs : fixed costs \(\beta f \)
 benefit proportional operating costs : rate \(\gamma \)
 LP with benefit SI for status u is determined by
 \[(1-\beta v) \cdot \text{LP}(m,c,u:n) = \text{NLP}(m,c,u:n) + (\alpha/a(c,u:n) + \gamma) + \beta f \]
Technical / reserves

- **random failure time of contract**
 \(K[u] \): curtate future lifetime, \(S[u] = T[u] - K[u] \): fractional time of life in failure year, \(S[m,u] = m \cdot \text{int}(S[u]/m+1) \): fractional portion \(S[u] \) rounded up to next \(m \)-th of a year
 \(T[m,u] = K[u] + S[m,u] \): moment of benefit payment by failure

- **random prospective loss of n-year endowment**
 \(v = 1/(1+i) \): discount factor to technical interest rate \(i \)
 random prospective loss at contract time \(t > 0 \):
 \[L(t;m,c,u:n) = v^{\min\{T[m,u+t],n-t\}} \cdot SI - NLP(m,c,u:n) \cdot a(c,\min\{T[m,u+t],n-t\}) \]
 with
 \[a(c,n) = \frac{1-v^n}{d(c)} \]
 \[d(c) = i(c)/(1+c \cdot i(c)) \]
 \[i(c) = (1+i)^c - 1/c \]
Technical / reserves

- states at time $t>0$ of couple (x,y) under mortality risk
 \[X(t)=1 \Leftrightarrow (T[m,x]>t, T[m,y]>t) \quad (x \text{ & } y \text{ alive at } t)\]
 \[X(t)=2 \Leftrightarrow (T[m,x]>t, T[m,y] \leq t) \quad (x \text{ alive } \& \text{ y dead at } t)\]
 \[X(t)=3 \Leftrightarrow (T[m,x] \leq t, T[m,y]>t) \quad (x \text{ dead } \& \text{ y alive at } t)\]
 \[X(t)=4 \Leftrightarrow (T[m,x] \leq t, T[m,y] \leq t) \quad (x \text{ & } y \text{ dead at } t)\]

- state dependent mathematical reserves
 mathematical reserve in state $X(t)=i$ at time $t>0 =$ expected value of prospective loss conditional on state:
 \[V(t,i) = E[L(t;m,c,u:n)|X(t)=i]\]

- joint-life status : $V(t,1) \neq 0, V(t,i) = 0$ for $i=2,3,4$
- last survivorship : $V(t,i) \neq 0$ for $i=1,2,3, V(t,4) = 0$
Technical / reserves

• state independent net premium reserve at time $t>0$
 conditional expectation of prospective loss given survival:
 $V(t) = E[L(t;m,c,u:n)|T[m,u]>t] = \sum V(t,i) \cdot P(X(t)=i|T[m,u]>t)$

• state dependent deferred acquisition costs (DAC)
 $VE(t,i) = -\alpha \cdot \{SI - V(t,i)\}, \ i=1,2,...$

• state independent expense reserve
 $VE(t) = -\alpha \cdot \{SI - V(t)\}$

• state dependent actuarial reserve
 $VA(t,i) = V(t,i) + VE(t,i), \ i=1,2,...$

• state independent premium reserve
 $VA(t) = V(t) + VE(t)$
state dependent components (special case \(m=c \))
At the discrete times \(t=k \cdot c, k=0,1,…,n/c–1 \), one has

- saving premium
 \[
 SP(t,i) = v^c \cdot V(t+c,i) - V(t,i), \quad i=1,2,…
 \]

- risk premium
 \[
 RP(t,i) = v^c \cdot q(c,u+t) \cdot \{SI - V(t+c,i)\}, \quad i=1,2,…
 = NLP(c,c,u:n) - SP(t,i)
 \]
 (saving premium + risk premium = net level premium)

- expense premium
 \[
 EP(c,c,u:n) = LP(c,c,u:n) - NLP(c,c,u:n)
 \]
 The expense premium splits into (similar net level premium)
Technical / premium components

- risk component expense premium
 \[REP(t,i) = \alpha \cdot RP(t,i), \quad i=1,2,... \]
- saving component expense premium
 \[SEP(t,i) = EP(c,c,u:n) - REP(t,i), \quad i=1,2,... \]
- state independent components (similar decomposition)
 saving premium: \[SP(t) = v^c \cdot V(t+c) - V(t) \]
 risk premium: \[RP(t,i) = v^c \cdot q(c,u+t) \cdot \{SI-V(t+c)\} \]
 \[= NLP(c,c,u:n) - SP(t) \]
 expense premium: \[EP(c,c,u:n) = LP(c,c,u:n) - NLP(c,c,u:n) \]
 risk component: \[REP(t) = \alpha \cdot RP(t) \]
 saving component: \[SEP(t) = EP(c,c,u:n) - REP(t) \]
All technical values related to the multiple life endowment depend solely on functions $A(m,u:n)$ and $a(c,u:n)$. Under the assumption of uniform distribution of deaths (UDD) further reduction to $D(u:n)$ and $E(u:n)$:

- **n-year term life insurance**

 - $D(m,u:n) = D(u:n) \cdot i/i(m)$ if $m > 0$

 - $D(m,u:n) = D(u:n) \cdot i/\delta$ if $m = 0$, $\delta = \ln{1+i}$

- **n-year endowment**

 - $A(m,u:n) = A(u:n) + \{i/i(m) - 1\} \cdot D(u:n)$

- **n-year life annuity**

 - $a(c,u:n) = \{1 - A(u:n) - \{i/i(m)-1\} \cdot D(u:n)\}/d(c)$
Computational / independence

- **simplifying assumption**
 tariff book is generated under independent future lifetimes: measure impact of assumption on actuarial calculations

- **Höffding - Fréchet upper bound**
 Fréchet class of bivariate distributions $F(s,t)$ with fixed margins $q(s,x)=P(T[x] \leq s)$ & $q(t,y)=P(T[y] \leq t)$. Consider
 Fréchet upper bound : $FU(s,t) = \min\{q(s,x),q(t,y)\}$
 Bivariate inequality : $F(s,t) \leq FU(s,t)$

- **upper bound for joint-life survival distribution**
 $p_U(t,u)=\min\{p(t,x),p(t,y)\}$
Computational / independence

- upper bound for last survivor survival distribution
 \[p_U(t,u') = \max\{p(t,x), p(t,y)\} \]

- joint-life survival distribution under independence
 \[p(t,u) = p(t,x) \cdot p(t,y) \]

- last survivor survival distribution under independence
 \[p(t,u') = p(t,x) + p(t,y) - p(t,u) \]

- inequalities between survival distributions
 \[p_I(t,u) \leq p_U(t,u), \quad p_U(t,u') \leq p(t,u') \]

 => random future lifetimes ordered in stochastic order
 => inequalities between NSP and NLP for status (u) & (u')

- maximum deviations for two-lives endowment in Table:
Computational / independence

- technical interest : 2%

- Life Table: Gompertz survival distribution

- Stress testing results:
 1) joint life status over-estimates NSP & NLP
 2) last survivorship status underestimates NSP & NLP

<table>
<thead>
<tr>
<th>interest</th>
<th>male</th>
<th>female</th>
<th>term</th>
<th>maximal deviations in per mill</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>x</td>
<td>y</td>
<td>n</td>
<td>NSP(u)</td>
</tr>
<tr>
<td>2%</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>34.5</td>
</tr>
<tr>
<td>2%</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>56.7</td>
</tr>
<tr>
<td>2%</td>
<td>50</td>
<td>50</td>
<td>10</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>39.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>61.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>66.9</td>
</tr>
<tr>
<td>2%</td>
<td>60</td>
<td>60</td>
<td>10</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>61.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>68.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>68.2</td>
</tr>
</tbody>
</table>