Valuation and Risk Assessment of Participating Life Insurance in the Presence of Credit Risk

Colloquium of the International Actuarial Association
AFIR/ERM
Lyon, June 24, 2013

Nadine Gatzert und Michael Martin
Friedrich-Alexander-University (FAU) Erlangen-Nürnberg
Introduction

Motivation

- Credit risk has long not been in the focus of most insurance companies

- Due to the long-term and guaranteed liabilities, life insurers invest a large part of their capital in long-term assets such as corporate and government bonds

- As a consequence of financial and sovereign crises, credit risk became increasingly important in the recent years

- In participating life insurance, capital investment management decisions can substantially affect
 - Policyholders’ surplus participation
 - Insurers’ risk situation
Introduction

Aim of paper

- Analyze the impact of market and credit risks in participating life insurance from the equityholders’ perspective

- Focus on the asset side and the induced market risk for
 - Stocks
 - Bonds (corporates and governments)

- Insurers’ assets are simultaneously affected
 - Equity risk
 - Interest rate risk
 - Credit risk

- Compare the differences for fair contract parameters and risk measures when taking credit into account or not
Model framework

Company overview

- At $t = 0$
 - Policyholders’ upfront premium: $P(0) = k \cdot A(0)$
 - Initial equity capital: $E(0) = A(0) - P(0)$

- Dividend payment (see Bohnert, Gatzert, and Jørgensen, 2012)
 $$D(t) = \mathbb{I}_{\{A(t) - P(t) > \beta E(0)\}} \cdot \beta \cdot E(0)$$

Modeling the liabilities (see, e.g., Gatzert, 2008)

- Cliquet-style guarantee
 $$P(t) = P(t-1) \cdot (1 + r_p(t)) = P(t-1) \cdot \left[1 + \max \left(r_g \cdot \frac{A(t)}{A(t-1)} - 1 \right) \right]$$

- Terminal surplus participation
 $$B(T) = \max \left(A(T) - P(T), 0 \right)$$
Model framework

Asset dynamics (1)

Equity risk

- Stocks follow a geometric Brownian motion

\[dA_S(t) = \mu_S \cdot A_S(t) \, dt + \sigma_S \cdot A_S(t) \, dW^P_S(t) \]

Interest rate risk

- Non-defaultable zero bond price is defined by the Cox, Ingersoll, and Ross (1985) (CIR) model

 - Short rate \(r(t) \):
 \[dr(t) = \kappa \cdot (\theta - r(t)) \, dt + \sigma_r \cdot \sqrt{r(t)} \, dW^Q_r(t) \]

 - Closed affine form for non-defaultable zero bond price:

\[p(t,h) = E_t^Q \left(e^{-\int_t^h r(s) \, ds} \right) = e^{F(t,h) - G(t,h)r(t)} \]
Credit risk

- Defaultable zero coupon bond price is based on the reduced-form credit risk model by Jarrow, Lando, and Turnbull (1997) (JLT)
 - Time-homogenous Markov process: \(X = (x(t), t \in \mathbb{N}_0) \)
 \[
 \begin{pmatrix}
 \psi_{1,1}(t,h) & \cdots & \psi_{1,m}(t,h) \\
 \vdots & & \vdots \\
 \psi_{m-1,1}(t,h) & \cdots & \psi_{m-1,m}(t,h) \\
 0 & 0 & \cdots & 1
 \end{pmatrix}
 \]
 - Distribution: \(\Psi(t,h) = \{\psi_{i,j}(t,h)\} \)
 - Stopping time: \(\tau^B = \inf\{t \in \mathbb{N} : x(t) = m\} \) and recovery rate of face value: \(\delta \)

- Defaultable zero coupon bond price with rating \(x(t) = i \)
 \[
 \hat{p}(t,h) = E^Q_t \left(\mathbb{I}_{\{\tau^B > h\}} \cdot e^{-\int_t^h r(s)ds + \mathbb{I}_{\{\tau^B \leq h\}} \cdot \delta_R \cdot e^{-\int_t^h r(s)ds} } \right)
 = p(t,h) \cdot \left(\delta_R + (1 - \delta_R) \cdot (1 - \psi(t,h)) \right)
 \]
Model framework

Asset dynamics (3)

Market value at time t

- Stock portfolio comprising N_S exposures
 \[A_S(t) = \sum_{i=1}^{N_S} A_{S,i}(t) \]

- Bond portfolio comprising N_B exposures
 \[A_B(t) = \sum_{j=1}^{N_B} A_{B,j}(t) \]

with \[A_{B,j}(t) = \mathbb{I}_{\{\tau_j^B > t\}} \cdot \sum_{h=t+1}^{T_j} \left(CF_j(h) \cdot \hat{p}_{x_j(t)=i}(t,h) \right) + \mathbb{I}_{\{\tau_j^B = t\}} \cdot \delta_R \cdot A_{B,j}(t-1) \]
Management decisions regarding the asset allocation

- Market value of assets (stocks and bonds) at time t before (-) and after (+) rebalancing the assets (based on Gerstner et al., 2008)
 - Market value of assets at time t:
 \[A(t) = A_S^-(t) + A_B^-(t) + CF(t) - D(t-1) \]
 - Free capital at time t:
 \[F(t) = A(t) - A_B^-(t) - D(t-1) = A_S^-(t) + CF(t) - D(t-1) \]
 - Market value of stocks at time t after rebalancing:
 \[A_S^+(t) = \max \left(\min \left(\alpha \cdot A(t), F(t) \right) \right), 0 \]
 - Market value of bonds at time t after rebalancing:
 \[A_B^+(t) = A_B^-(t) + F(t) - A_S^+(t) \]
Model framework

Fair valuation from the equityholders’ perspective and risk measurement

- Time of company default
 \[\tau^C = \inf \{ t \in \{1, \ldots, T \} : A(t) < P(t) \} \]

- Equity capital at time \(t \)
 \[E(t) = \begin{cases} A(t) - L(t), & \tau^C > t \\ 0, & \text{else} \end{cases} \quad \text{with} \quad L(t) = \begin{cases} P(t), & (t < T_j) \cap (\tau^C > t) \\ P(t) + \delta_L \cdot B(t), & (t = T_j) \cap (\tau^C > t) \\ A(t) \cdot (1 - c), & \tau^C = t \\ 0, & \text{else} \end{cases} \]

- Equityholders’s claim at time \(t \) and fair condition
 \[\Pi^E = E^Q \left(\mathbb{1}_{\{\tau^C > T\}} \cdot e^{-\int_0^T r(s) ds} \cdot E(T) + \sum_{i=1}^T e^{-\int_0^{T_i} r(s) ds} \cdot D(t-1) + \mathbb{1}_{\{\tau^C \leq T\}} \sum_{i=1}^{\tau^C - 1} e^{-\int_0^{T_i} r(s) ds} \cdot D(t-1) \right) = E(0) \]

- Net present value and shortfall probability
 \[NPV^P = E^Q \left(\mathbb{1}_{\{\tau^C > T\}} \cdot e^{-\int_0^T r(t) dt} \cdot L(T) + \mathbb{1}_{\{\tau^C \leq T\}} \cdot e^{-\int_0^{\tau^C} r(t) dt} \cdot L(\tau^C) \right) - P(0) \quad \text{and} \quad SP = LPM_{0} = P(\tau^C \leq T) \]
Numerical results

Input parameters

- Company and contract parameters
 - $T = 15$
 - $P(0) = 85$, $E(0) = 15$, $A(0) = 100$
 - $\delta_L = 0.3$
 - $\beta = 0.06$

- Stock portfolio

<table>
<thead>
<tr>
<th>i</th>
<th>Stock</th>
<th>m_S</th>
<th>σ_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DAX 30</td>
<td>0.0637</td>
<td>0.2164</td>
</tr>
<tr>
<td>2</td>
<td>FTSE 100</td>
<td>0.0436</td>
<td>0.1658</td>
</tr>
<tr>
<td>3</td>
<td>Dow Jones Industrial</td>
<td>0.0755</td>
<td>0.1784</td>
</tr>
</tbody>
</table>

- CIR model

<table>
<thead>
<tr>
<th>$r(0)$</th>
<th>σ_r</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0369</td>
<td>0.0342</td>
<td>0.1810</td>
</tr>
</tbody>
</table>

- Correlations (S_i, r)

- Bond portfolio

<table>
<thead>
<tr>
<th>j</th>
<th>Type</th>
<th>Rating</th>
<th>Maturity (years)</th>
<th>Coupon p.a. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corporate</td>
<td>AA</td>
<td>15</td>
<td>2.800</td>
</tr>
<tr>
<td>2</td>
<td>Corporate</td>
<td>A</td>
<td>15</td>
<td>4.125</td>
</tr>
<tr>
<td>3</td>
<td>Corporate</td>
<td>BBB</td>
<td>15</td>
<td>7.125</td>
</tr>
<tr>
<td>4</td>
<td>Government</td>
<td>AAA</td>
<td>16</td>
<td>2.275</td>
</tr>
<tr>
<td>5</td>
<td>Government</td>
<td>A</td>
<td>15</td>
<td>3.000</td>
</tr>
<tr>
<td>6</td>
<td>Government</td>
<td>BB</td>
<td>17</td>
<td>7.750</td>
</tr>
</tbody>
</table>

- JLT model

<table>
<thead>
<tr>
<th>δ_R</th>
<th>ψ</th>
<th>Transition rates from rating agencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Numerical results

Fair contracts with and without credit risk

Bond portfolio 1

<table>
<thead>
<tr>
<th>α (%)</th>
<th>1: r_g = 1.25%</th>
<th>2: r_g = 1.75%</th>
<th>3: r_g = 2.25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Bond portfolio 1 (higher grade): B_1, B_2, B_4, B_5.

Gatzert / Martin “Valuation and Risk Assessment of Participating Life Insurance in the Presence of Credit Risk”
Colloquium of the International Actuarial Association, AFIR/ERM, Lyon, June 24, 2013
Numerical results

Fair contracts with and without credit risk

Bond portfolio 2

\[r_g = 1.25\% \]
\[r_g = 1.75\% \]
\[r_g = 2.25\% \]

Notes: Bond portfolio 2 (lower grade): \(B_2, B_3, B_5, B_6 \).
Numerical results

Risk measurement with and without credit risk (1)

<table>
<thead>
<tr>
<th>Bond portfolio 1</th>
<th>$\alpha = 0%$</th>
<th>$\alpha = 5%$</th>
<th>$\alpha = 10%$</th>
<th>$\alpha = 15%$</th>
<th>$\alpha = 20%$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With credit risk</td>
<td>-0.69 pp</td>
<td>-1.08 pp</td>
<td>-1.58 pp</td>
<td>-0.60 pp</td>
<td>-0.78 pp</td>
</tr>
<tr>
<td>Without credit risk</td>
<td>-0.76 pp</td>
<td>-0.93 pp</td>
<td>-0.69 pp</td>
<td>-0.59 pp</td>
<td>-0.68 pp</td>
</tr>
<tr>
<td></td>
<td>-0.49 pp</td>
<td>-0.68 pp</td>
<td>-0.33 pp</td>
<td>-0.42 pp</td>
<td>-0.50 pp</td>
</tr>
<tr>
<td></td>
<td>-0.34 pp</td>
<td>-0.42 pp</td>
<td>-0.23 pp</td>
<td>-0.34 pp</td>
<td>-0.34 pp</td>
</tr>
</tbody>
</table>

Notes: Bond portfolio 1 (higher grade): B_1, B_2, B_4, B_5.

Gatzert / Martin “Valuation and Risk Assessment of Participating Life Insurance in the Presence of Credit Risk”
Colloquium of the International Actuarial Association, AFIR/ERM, Lyon, June 24, 2013
Numerical results

Risk measurement with and without credit risk (2)

Bond portfolio 2

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>7.75 pp</td>
<td>-9.33 pp</td>
<td>5.58 pp</td>
<td>6.59 pp</td>
<td>6.91 pp</td>
<td>5.08 pp</td>
<td>6.69 pp</td>
<td>5.77 pp</td>
<td>5.00 pp</td>
<td>3.28 pp</td>
<td>3.71 pp</td>
<td>6.57 pp</td>
<td>3.20 pp</td>
<td>2.54 pp</td>
</tr>
</tbody>
</table>

Notes: Bond portfolio 2 (lower grade): B₂, B₃, B₅, B₆.
Numerical results

Impact of bonds’ recovery (with $r_g = 1.75\%$)

<table>
<thead>
<tr>
<th>Stock Portion α</th>
<th>Shortfall Probability SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>10%</td>
<td>8%</td>
</tr>
<tr>
<td>15%</td>
<td>12%</td>
</tr>
<tr>
<td>20%</td>
<td>16%</td>
</tr>
<tr>
<td>25%</td>
<td>20%</td>
</tr>
<tr>
<td>30%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Notes: Bond portfolio 1 (higher grade): B_1, B_2, B_4, B_5; bond portfolio 2 (lower grade): B_2, B_3, B_5, B_6.

[Graph showing the impact of bonds' recovery on shortfall probability for two bond portfolios with different grades and varying stock portions.]

Gatzert / Martin “Valuation and Risk Assessment of Participating Life Insurance in the Presence of Credit Risk”
Colloquium of the International Actuarial Association, AFIR/ERM, Lyon, June 24, 2013
Summary

- Focus on participating life insurance contracts: Study the interaction between equity risk, interest rate risk, credit risk

- Impact of credit risk on the insurers’ shortfall risk strongly depends on the insurer’s asset allocation
 - Tradeoff between higher coupon payments (→ offered by lower grade assets to compensate investors for taking higher risk) and increase in shortfall risk: a “turning point” may exist
 - Tradeoff between equity risk and credit risk
 - Shortfall risk can even decrease for an increasing stock portion in case of high credit risk exposure in (low-grade) bond portfolios

- Consideration of interaction effects between different risks imposed by asset portfolio is vital for an adequate risk assessment
Valuation and Risk Assessment of Participating Life Insurance in the Presence of Credit Risk

Thank you very much for your attention!

Colloquium of the International Actuarial Association
AFIR/ERM
Lyon, June 24, 2013

Nadine Gatzert und Michael Martin
Friedrich-Alexander-University (FAU) Erlangen-Nürnberg