Living With Solvency II
An Economic Capital Perspective
From Recent History

IAA Colloquium – 24 June 2013
Agenda

Capital Modelling:
- Some Topical Analysis
- Key Technical Developments
CAPITAL MODELLING
Some Topical Analysis
Historical Capital Analysis

Introduction

Using ECSight™, we have been able to explore the implications for own funds and required capital of some “interesting” recent periods of market history:

- Periods considered were:
 - Q2-Q3 2008: build up to the banking crisis and Lehman collapse
 - Q1-Q2 2009: crisis deepens, AIG reports largest 1/4ly loss in history
 - Q2-Q3 2011: build up to Eurozone sovereign debt crisis

- This analysis required:
 - Daily valuation of 1300+ assets over 360 business days using 5,000 stresses to evaluate the SCR at each point in time
Historical Capital Analysis
Daily Movements In Excess Capital

Daily Historical SCR and Excess Capital Position

- SCR uncovered!

<table>
<thead>
<tr>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2y Swap</td>
<td>5.24</td>
<td>5.61</td>
<td>6.21</td>
<td>5.88</td>
<td>5.45</td>
<td>5.34</td>
<td>2.26</td>
<td>2.17</td>
<td>2.21</td>
<td>2.18</td>
<td>2.00</td>
<td>2.27</td>
<td>1.78</td>
<td>1.54</td>
<td>1.42</td>
<td>1.36</td>
<td>1.22</td>
<td>1.22</td>
</tr>
<tr>
<td>10y Swap</td>
<td>5.11</td>
<td>5.26</td>
<td>5.60</td>
<td>5.46</td>
<td>5.13</td>
<td>5.05</td>
<td>3.62</td>
<td>3.72</td>
<td>3.62</td>
<td>3.74</td>
<td>3.90</td>
<td>4.18</td>
<td>3.77</td>
<td>3.51</td>
<td>3.41</td>
<td>3.33</td>
<td>2.89</td>
<td>2.62</td>
</tr>
<tr>
<td>A Spread</td>
<td>2.23</td>
<td>1.98</td>
<td>2.05</td>
<td>2.24</td>
<td>2.34</td>
<td>2.67</td>
<td>5.28</td>
<td>-4.99</td>
<td>5.11</td>
<td>5.06</td>
<td>4.27</td>
<td>3.57</td>
<td>1.77</td>
<td>1.80</td>
<td>1.99</td>
<td>2.08</td>
<td>2.39</td>
<td>2.85</td>
</tr>
<tr>
<td>B Spread</td>
<td>7.36</td>
<td>6.58</td>
<td>6.90</td>
<td>8.19</td>
<td>8.67</td>
<td>9.25</td>
<td>17.63</td>
<td>17.79</td>
<td>19.43</td>
<td>17.53</td>
<td>14.73</td>
<td>13.27</td>
<td>4.82</td>
<td>4.92</td>
<td>5.34</td>
<td>5.72</td>
<td>7.54</td>
<td>8.85</td>
</tr>
</tbody>
</table>
Historical Capital Analysis
Matching Adjustment (MA)
Historical Capital Analysis
Daily Movements In Excess Capital – MA Added

Including mitigation of SCR credit stresses reduces SCR by c15% providing a further boost to excess capital

Volatility in excess capital reduced by c70%
Historical Capital Analysis
Biting Scenario Parameters
Historical Capital Analysis

Individual Scenario Analysis (2)

Scenario 2960 is found to provide a robust proxy for MLC’s solvency position – maximum daily error across the analysis period is £22m
There is some modest pro-cyclicality to the relationship
Historical Capital Analysis
Daily VAR Back-Test

VAR breaches over this period:
Expected = 2 (360 * 0.005)
Observed = 2
CAPITAL MODELLING
Key Technical Developments
ECSight

Key Features

<table>
<thead>
<tr>
<th>Actuarial Aspects</th>
<th>System Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td></td>
</tr>
<tr>
<td>- Implementation is efficient enough for practical asset-by-asset modeling</td>
<td></td>
</tr>
<tr>
<td>- Extensive existing coverage: fixed income, money market, derivatives, growth</td>
<td></td>
</tr>
<tr>
<td>Liabilities</td>
<td></td>
</tr>
<tr>
<td>- “Lite” model implemented using high dimensional spline interpolation. Modular so other approaches can be integrated</td>
<td></td>
</tr>
<tr>
<td>- “Heavy Model” and risk scenario generator agnostic</td>
<td></td>
</tr>
<tr>
<td>- Individual “Lite” models fit to many balance sheet items, allowing granular reporting / analysis</td>
<td></td>
</tr>
<tr>
<td>- Cash flows or other passage of time elements can be incorporated for roll-forward</td>
<td></td>
</tr>
<tr>
<td>Risk Taxonomy</td>
<td></td>
</tr>
<tr>
<td>Computing Power</td>
<td></td>
</tr>
<tr>
<td>- Cloud enabled: provides high-performance computing & scheduling capabilities in MS Azure</td>
<td></td>
</tr>
<tr>
<td>- Reliable and scalable</td>
<td></td>
</tr>
<tr>
<td>Data Management</td>
<td></td>
</tr>
<tr>
<td>- Robust data model in SQL Server providing scalability, versioning and flexible reporting</td>
<td></td>
</tr>
<tr>
<td>- Multiple vendor support for market data</td>
<td></td>
</tr>
<tr>
<td>End User Interaction</td>
<td></td>
</tr>
<tr>
<td>- Via Web UI, no desk-top installation required</td>
<td></td>
</tr>
<tr>
<td>- Multi-site, multi-user, secure access</td>
<td></td>
</tr>
</tbody>
</table>
Radial Basis Function (RBF) Approach

- Multidimensional spline interpolation
- Interpolate unknown function from calibrating data points to any arbitrary point/scenario
- Individual RBFs can be fit to numerous balance sheet items, allowing for granular reporting and in-depth analysis
- The approach can be used to systematically improve accuracy and evaluate convergence
Radial Basis Functions
Calibration (1)

\[P_f(z) = w_1 \phi(\|z - x^{(1)}\|) + w_2 \phi(\|z - x^{(2)}\|) + \cdots + w_N \phi(\|z - x^{(N)}\|) \]
Radial Basis Functions

Calibration (2)

- Does not require grid sampling; easy to add new risk factors
- Calibrating scenarios are selected to adequately cover the entire range of possible risk driver values
- By simultaneously sampling each risk driver within the reliable range and using a low discrepancy sampling method, each scenario consists of random like shocks to all risk drivers

Random Sampling:
- Diversified scenarios
- Less points needed than regular grid
- Can leave gaps

Low Discrepancy Sampling
- All benefits of random sampling
- Does not leave gaps
- Speeds up convergence
Radial Basis Functions

Interpolation Error* vs Calibration Sample Size

*Evaluated across 225 out-of-sample observations with an available capital response range of $9bn

- RBF achieves high degree of accuracy
- Able to target a specific error tolerance, optimized to specifications

Here, the RBF model is able to meet a 2% error tolerance threshold with a sample of roughly 375 calibrating nodes.
Cloud enablement can now provide:

- On-demand access to virtually unlimited computing resources
 - An ability to provision resources on-demand to lower operating costs without sacrificing accuracy or granularity
 - Node-monitoring and automatic failover mechanisms to maximize reliability

- 1.8 million market value balance sheet valuations

- Elapsed runtime with 3,000+ CPUs in the cloud was approximately 5.5 hours*

* A real-time daily solvency valuation with the same portfolio, comparable cloud resources and 100,000 SCR stresses takes about 20 minutes to complete
Speaker Contact Details

Russell Ward
russell.ward@milliman.com

Matthew Cocke
matthew.cocke@milliman.com
This presentation has been prepared for illustrative purposes only.

Whilst every effort has been made to ensure the accuracy of the material in this presentation, neither Milliman LLP nor the presentation’s authors/co-authors will be liable for any loss or damages incurred through the use of the analysis.

While care has been taken in gathering the data and preparing the analysis, Milliman does not make any representations or warranties as to its accuracy or completeness and expressly excludes to the maximum extent permitted by law all those that might otherwise be implied. Milliman accepts no responsibility or liability for any loss or damage of any nature occasioned to any person as a result of acting or refraining from acting as a result of, or in reliance on, any statement, fact, figure or expression of opinion or belief contained in this analysis.

Use of such information is voluntary and should not be relied upon unless an independent review of its accuracy and completeness has been performed. Neither Milliman nor the authors of the analysis owe any duty of care to any reader of this analysis and each expressly disclaims any responsibility for any judgments or conclusions which may result therefrom. This analysis and any information contained therein is protected by Milliman’s and the authors’/co-authors’ copyrights and must not be modified or reproduced without express consent.

This report does not constitute advice of any kind.

Copyright © Milliman 2012. All rights reserved.