Mortality and Smoking Prevalence

Torsten Kleinow
joint work with Andrew J.G. Cairns
Heriot-Watt University, Edinburgh

AFIR 2011 - MADRID
Smoking

UK (black), CA (blue) – age 70
observed smoking prevalence
Mortality Models for Multiple Populations

Consider k different populations (countries). For each country i, time t and age x we observe

- $D_i(t, x)$: Number of deaths,
- $E_i(t, x)$: Exposure-to-risk
- $m_i(t, x) = D_i(t, x)/E_i(t, x)$, deaths rate

Core Hypothesis, Li & Lee (2005), Cairns et al. (2011): For all ages x and all i and j:

$$m_i(t, x)/m_j(t, x) \nrightarrow \infty \quad \text{for} \quad t \nrightarrow \infty$$
Mortality Models for Multiple Populations

Consider \(k \) different populations (countries). For each country \(i \), time \(t \) and age \(x \) we observe

\[
D_i(t, x): \text{ Number of deaths,} \\
E_i(t, x): \text{ Exposure-to-risk} \\
m_i(t, x): = \frac{D_i(t, x)}{E_i(t, x)}, \text{ deaths rate}
\]

Core Hypothesis, Li & Lee (2005), Cairns et al. (2011): For all ages \(x \) and all \(i \) and \(j \):

\[
m_i(t, x)/m_j(t, x) \not\to \infty \text{ for } t \to \infty
\]
Covariates

Covariates influencing individual life expectancy and disability-free life expectancy:

► life style (obesity, smoking, alcohol consumption, physical exercise, ...)
► socio-economic variables (income, wealth, Housing tenure, education, ...)
► genetic factors?
Covariates

Covariates influencing individual life expectancy and disability-free life expectancy:

- life style (obesity, smoking, alcohol consumption, physical exercise, ...)
- socio-economic variables (income, wealth, Housing tenure, education, ...)
- genetic factors?

Can these covariates be used to model country specific mortality rates?
Covariates

Covariates influencing individual life expectancy and disability-free life expectancy:

► life style (obesity, smoking, alcohol consumption, physical exercise, ...)

► socio-economic variables (income, wealth, Housing tenure, education, ...)

► genetic factors?

Can these covariates be used to model country specific mortality rates?
Example: Smoking prevalence
Available data

What we observe:

- deaths rates (www.mortality.org), “1×1-table”
- smoking prevalence (International Smoking Statistics, P N Lee Statistics and Computing Ltd)

There are different definitions (total cigarettes, manufactured cigarettes, any tobacco products) based on surveys
Available data

What we observe:

▶ deaths rates (www.mortality.org), “1×1-table”
▶ smoking prevalence (International Smoking Statistics, P N Lee Statistics and Computing Ltd)
 there are different definitions (total cigarettes, manufactured cigarettes, any tobacco products)
 based on surveys

What we do not observe:

▶ deaths rates for smokers and non-smokers, separately
▶ Cessation data
▶ “1×1-table”, in general, prevalence data are only available for age groups
Smoking and Mortality - British Doctors

R. Doll, R. Peto, J. Boreham and I. Sutherland: “Mortality in relation to smoking: 50 years’ observations on male British Doctors”

- 34,439 British doctors,
- data about smoking habits was first obtained in 1951 and then periodically thereafter
- mortality was monitored for 50 years

Main results:

- substantial decrease in the mortality rates of non-smokers
- survival rates from age 35 for smokers are the same for cohorts born between 1900 to 1930, for non-smokers these survival rates have increased substantially
Smoking and Mortality

For each country i, time t and age x we define

$D_i(t, x)$: Number of deaths,
$D_i^N(t, x), D_i^S(t, x)$ for non-smokers, smokers (not observed)
$D_i(t, x) = D_i^N(t, x) + D_i^S(t, x)$

$E_i(t, x)$: Exposure-to-risk

$m_i(t, x) = D_i(t, x)/E_i(t, x)$,
$m_i^N(t, x), m_i^S(t, x)$, deaths rates

$s_i(t, x)$: Smoking prevalence, in $[0, 1]$,
the number of smokers is $s_i(t, x)E_i(t, x)$

We do not distinguish between life-long non-smokers and non-smokers who used to smoke.
Smoking and Mortality

\[D_i(t, x) = D_i^N(t, x) + D_i^S(t, x) \]
\[= m_i^N(t, x) [1 - s_i(t, x)] E_i(t, x) + m_i^S(t, x) s_i(t, x) E_i(t, x) \]

where

\[m_i^N(t, x) = \frac{D_i^N(t, x)}{[1 - s_i(t, x)] E_i(t, x)} \]
\[m_i^S(t, x) = \frac{D_i^S(t, x)}{s_i(t, x) E_i(t, x)} \]

We obtain

\[m_i(t, x) = \frac{D_i(t, x)}{E_i(t, x)} = m_i^N(t, x) + \left[m_i^S(t, x) - m_i^N(t, x) \right] s_i(t, x) \]
Smoking and Mortality

Modelling assumptions:

- Smoking has the same effect on mortality rates in all observed countries.
- Non-smokers’ mortality in country i is the sum of general non-smokers’ mortality and a “country effect”

\[m_i(t, x) = m^N(t, x) + \left[m^S(t, x) - m^N(t, x) \right] s_i(t, x) + C_i(t, x) \]

where $C_i(t, x)$ is a country specific effect.

First aim: Estimate $m^N(t, x)$ and $m^S(t, x)$.
Smoking and Mortality

year: 1980, age: 60

Smoking Prevalence
Deaths rate
AU
CA
CH
DE
FR
NZ
OE
SW
UK
US

year: 1990, age: 60

Smoking Prevalence
Deaths rate
AU
CA
CH
DE
FR
NZ
OE
SW
UK
US
Smoking and Mortality

year: 1980, age: 60

year: 1990, age: 60
Simplifying Assumptions

Motivated by the findings for British doctors, we assume that there is:

no improvement in smokers’ mortality rates
\[m^S(t, x) = m^S(x) \]

\[m_i(t, x) = m^N(t, x) + \left[m^S(x) - m^N(t, x) \right] s_i(t, x) + C_i(t, x) \]
Constant smoker’s mortality over time

Least-Square Estimation for a fixed age x:

$$MSE_x(m^S, m^N) = \sum_t \sum_i (C_i(t, x))^2$$

$$= \sum_t \sum_i \left(m_i(t, x) - m^N(t, x) - \left[m^S(x) - m^N(t, x) \right] s_i(t, x) \right)^2$$

Note: $m^N = (m^N(1, x), \ldots, m^N(T, x))$

Choose m^S, m^N such that

$$MSE_x(m^S, m^N) \rightarrow \text{min}$$
Constant smokers’ mortality over time

Explicit solution for fixed age x is the solution of the following linear system of equations:

$$m^S = \frac{1}{\sum_t \sum_i s_i^2(t)} \sum_t \sum_i s_i(t) \left[m_i(t) - m^N(t)(1 - s_i(t)) \right]$$

$$m^N(t) = \frac{\sum_i (1 - s_i(t)) m_i(t)}{\sum_i (1 - s_i(t))^2} - m^S \frac{\sum_i (1 - s_i(t)) s_i(t)}{\sum_i (1 - s_i(t))^2}$$
Constant smokers’ mortality over time

UK (black), CA (blue) – age 60
fitted (dashed) and observed deaths rates
Constant smokers’ mortality over time

UK (black), CA (blue) – age 70
fitted (dashed) and observed deaths rates

year
deaths rate
Constant smokers’ mortality over time

Deaths rates for ages 50 to 87
Country: UK, year: 1990

Deaths rates for ages 50 to 87
Country: CA, year: 1990
Comparison with British Doctors

Survival from age 35 in 1961 – UK born in 1926

Survival from age 35 in 1961 – CA born in 1926
Modelling the Country effect

Model for $m_i(t, x)$:

$$m_i(t, x) = m^N(t, x) + [m^S(x) - m^N(t, x)]s_i(t, x) + C_i(t, x)$$

“Core Hypothesis”

$$m_i(t, x)/m_j(t, x) \not\to \infty \text{ for } t \to \infty$$

Since $m^S(x)$ is constant over time, the core hypothesis can only be fulfilled if $m^N(t, x) \to K(x) > 0$.
Modelling the Country effect

Model for $m_i(t, x)$:

$$m_i(t, x) = m^N(t, x) + [m^S(x) - m^N(t, x)] s_i(t, x) + C_i(t, x)$$

“Core Hypothesis”

$$m_i(t, x)/m_j(t, x) \not\to \infty \text{ for } t \to \infty$$

Since $m^S(x)$ is constant over time, the core hypothesis can only be fulfilled if $m^N(t, x) \to K(x) > 0$.

Since we consider a covariate (smoking) we change the core hypothesis to:

For any $i \neq j$ and any fixed age x holds:

$$s_i(t, x) = s_j(t, x) \forall t \quad \Rightarrow \quad m_i(t, x)/m_j(t, x) \not\to \infty$$

for $t \to \infty$
We can now investigate the effect of smoking on survival rates. With the estimates obtained earlier we consider

$$m_i(t, x) = m^N(t, x) + 0.75[m^S(x) - m^N(t, x)]s_i(t, x)$$

for the cohort aged 35 in 1961.

Rate of survival to age $x > 35$ for the cohort aged 35 in 1961:

$$S(x, 1961, 35) = \prod_{j=1}^{x-35} \left(1 - m_i(1961 + j, 35 + j)\right)$$
Scenarios

Survival from age 35 in 1961 – UK
born in 1926

Survival from age 35 in 1961 – CA
born in 1926
Scenarios - Smoking Prevalence reduced by 25%

Survival from age 35 in 1961 – UK
born in 1926

Survival from age 35 in 1961 – CA
born in 1926
Concluding remarks

- There is empirical evidence that smoking prevalence can be used to model deaths rates for entire countries and explain differences in country-specific mortality rates.
- There is still a country-specific effect that has an impact on mortality.
- There is only one “trend” component (non-smokers’ mortality) in our model.
- We require an assumption about the relationship between mortality rates of smokers and non-smokers when no cessation data are available.
- The assumption of constant smokers’ mortality rates is very strong, and other assumptions should be investigated.
- These are all preliminary results.
Concluding remarks

“... the easy application of a principle and its apparent adequacy give no very certain proof of its soundness ...”

Immanuel Kant (1785): “Groundwork for the Metaphysics of Morals”, translated by Thomas Kingsmill Abbott