The Impact of Introducing Insurance Guaranty Schemes on Pricing and Capital Structure

Prof. Dr. Joël Wagner

AFIR Colloquium
Madrid, June 2011
Basic idea of Insurance Guaranty Schemes (IGS): customer protection through securing claims

Starting position

Solvency II: Run-off of financial services companies is intended as transfer of portfolio at the respective market price

Implications

- Protection of policyholders interests mainly through the protective function of the solvency regulation (protection of the institution insurance)
- Reduction of the insurer's ruin probability to a very low but still positive level
- Policyholders interests are not fully protected
Structure of insurance guaranty schemes

Exemplary illustration

In this example:

- Insurance company pays premium to guaranty fund
- Ex-ante payment to fund
- Fund contribution is percentage of policyholders' premium P_0
Overview of existing insurance guaranty funds

<table>
<thead>
<tr>
<th>Country</th>
<th>Since</th>
<th>Segments</th>
<th>Contributions</th>
<th>Ex</th>
<th>RW</th>
<th>Compensation</th>
<th>Further funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>1972</td>
<td>NL*</td>
<td>Once 1.4 Mio. EUR</td>
<td>Ante</td>
<td>No</td>
<td>100%</td>
<td>Ex-post</td>
</tr>
<tr>
<td>Canada</td>
<td>1988</td>
<td>L&H, P&C</td>
<td>n/a</td>
<td>Ante</td>
<td>No</td>
<td>85%, 70%, both w/cap</td>
<td>Ex-post, borrowing power</td>
</tr>
<tr>
<td>Denmark</td>
<td>2003</td>
<td>NL</td>
<td>Fixed per policy*</td>
<td>Ante</td>
<td>No</td>
<td>100%</td>
<td>State-guaranteed loans</td>
</tr>
<tr>
<td>Finland</td>
<td>1997</td>
<td>NL*, H</td>
<td>Cap 2% of premiums</td>
<td>Ante</td>
<td>No</td>
<td>100%</td>
<td>Ex-post (policyholders)</td>
</tr>
<tr>
<td>France</td>
<td>1999</td>
<td>L, NL, H</td>
<td>0.05% math. prov.*</td>
<td>Ante</td>
<td>No</td>
<td>100% w/cap, 90%*</td>
<td>Borrowing power</td>
</tr>
<tr>
<td>Germany</td>
<td>2002</td>
<td>L, H</td>
<td>0.02% net reserves*</td>
<td>Ante, Post</td>
<td>Yes*</td>
<td>100%*</td>
<td>Ex-post*</td>
</tr>
<tr>
<td>Ireland</td>
<td>1964</td>
<td>NL</td>
<td>Cap 2% of premiums</td>
<td>Post</td>
<td>No</td>
<td>65% w/cap</td>
<td>Borrowing power</td>
</tr>
<tr>
<td>Italy</td>
<td>2006</td>
<td>NL*</td>
<td>5% of premiums</td>
<td>Ante</td>
<td>No</td>
<td>100% w/cap</td>
<td>None</td>
</tr>
<tr>
<td>Japan</td>
<td>1998</td>
<td>L, NL</td>
<td>% of premiums</td>
<td>Ante</td>
<td>No*</td>
<td>80 – 100%</td>
<td>None</td>
</tr>
<tr>
<td>Korea</td>
<td>1996</td>
<td>L, NL</td>
<td>% of premiums</td>
<td>Ante</td>
<td>No</td>
<td>100% w/cap</td>
<td>None</td>
</tr>
<tr>
<td>Latvia</td>
<td>1999</td>
<td>L, NL, H</td>
<td>1% of gross premiums</td>
<td>Ante</td>
<td>No</td>
<td>100%, 50%, both w/cap</td>
<td>None</td>
</tr>
<tr>
<td>Malta</td>
<td>1986</td>
<td>L, NL</td>
<td>0.125% of gross prem.</td>
<td>Ante</td>
<td>No</td>
<td>75% w/cap*</td>
<td>Borrowing power</td>
</tr>
<tr>
<td>Norway</td>
<td>1996</td>
<td>NL</td>
<td>1% of gross premiums</td>
<td>Ante</td>
<td>No</td>
<td>90 – 100%</td>
<td>None</td>
</tr>
<tr>
<td>Poland</td>
<td>1991</td>
<td>L, NL</td>
<td>1% of gross premiums*</td>
<td>Post*</td>
<td>No</td>
<td>50%, 100%, both w/cap</td>
<td>None</td>
</tr>
<tr>
<td>Romania</td>
<td>2001</td>
<td>L, NL</td>
<td>0.3%, 0.8% of gross pr.*</td>
<td>Ante</td>
<td>No</td>
<td>100%</td>
<td>None</td>
</tr>
<tr>
<td>Spain</td>
<td>2004</td>
<td>L, NL</td>
<td>0.3-3% of premiums*</td>
<td>Ante*</td>
<td>No</td>
<td>Up to 100% w/cap*</td>
<td>None</td>
</tr>
<tr>
<td>U.K.</td>
<td>2001</td>
<td>L, NL</td>
<td>Cap 0.8% of net prem.</td>
<td>Ante</td>
<td>No</td>
<td>90%*</td>
<td>Borrowing power</td>
</tr>
<tr>
<td>U.S.</td>
<td>1983</td>
<td>L&H, P&C</td>
<td>% of premiums*</td>
<td>Post*</td>
<td>No</td>
<td>100% w/cap*</td>
<td>National associations/funds</td>
</tr>
</tbody>
</table>

* see original working paper for details/remarks
Why guaranty schemes?
Point of view of the European Union

- IGS provide **last-resort protection to consumers** when insurance undertakings are unable to fulfill their contractual commitments (e.g., in case of insolvencies)

- **Only a few E.U. member states** have one or more insurance guaranty schemes in place

- **Lack of harmonization** in this area may hinder effective and equal **consumer protection**. This may lead to a **loss of consumer confidence** in the relevant markets and may ultimately put at risk market stability. It may also impede the functioning of the internal insurance market by **distorting cross-border competition**

- In the **banking** and the securities sectors specific directives on guarantee schemes have been adopted **since 1994**

- Recent financial turmoil has made **people** far more **aware of the existence and limits of consumer protection/guarantee schemes** in all financial sectors

Review of status quo and current discussions

Background & status quo

- Guaranty funds with different coverage in different countries
- In the E.U., 26% of all life and 56% of all non-life insurance policies unprotected
- E.U.-wide harmonization in discussion, in other countries discussion about introduction
- **Fund contributions mostly (premium) volume-based**
 - Why harmonization?
 - Why introduction?
 - Discussion boosted due to financial crisis

Known incentives

Adverse incentives

- Effects of ex-post premiums
- Non-risk-adequate ex-ante premiums
- Basically danger of wealth transfers among insureds of different insurance companies
- Increase of risk appeared in practice on listed insurers in the U.S. (Lee et al., 1997)
- Difficult interaction with other regulation tools (solvency capital requirements)

Positiv incentives

- Strengthening trust / consumer confidence (customer perspective)

Note: compulsory membership

- See Akerlof’s argument on adverse selection

(Further) reasons for insurance guaranty schemes?

Systemic risk?
1. Under What Conditions is an Insurance Guaranty Fund Beneficial for Policyholders?

P. Rymaszewski, H. Schmeiser, J. Wagner
Forthcoming in: The Journal of Risk and Insurance

2. The Impact of introducing Insurance Guaranty Schemes on Pricing and Capital Structure

H. Schmeiser, J. Wagner
I.VW-HSG Working Paper No. 80

3. A Proposal for a Capital Market-Based Guaranty Scheme for the Financial Industry

H. Schmeiser, J. Wagner, A. Zemp
I.VW-HSG Working Paper No. 85
Background: Most IGS contributions are ex-ante and premium volume-based

<table>
<thead>
<tr>
<th>Country</th>
<th>Since</th>
<th>Segments</th>
<th>Contributions</th>
<th>Ex</th>
<th>RW</th>
<th>Compensation</th>
<th>Further funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>1972</td>
<td>NL*</td>
<td>Once 1.4 Mio. EUR</td>
<td>Ante</td>
<td>No</td>
<td>100%</td>
<td>Ex-post</td>
</tr>
<tr>
<td>Canada</td>
<td>1988</td>
<td>L&H, P&C</td>
<td>n/a</td>
<td>Ante</td>
<td>No</td>
<td>85%, 70%, both w/cap</td>
<td>Ex-post, borrowing power</td>
</tr>
<tr>
<td>Denmark</td>
<td>2003</td>
<td>NL</td>
<td>Fixed per policy*</td>
<td>Ante</td>
<td>No</td>
<td>100%</td>
<td>State-guaranteed loans</td>
</tr>
<tr>
<td>Finland</td>
<td>1997</td>
<td>NL*, H</td>
<td>Cap 2% of premiums</td>
<td>Ante</td>
<td>No</td>
<td>100%</td>
<td>Ex-post (policyholders)</td>
</tr>
<tr>
<td>France</td>
<td>1999</td>
<td>L, NL, H</td>
<td>0.05% math. prov.*</td>
<td>Ante</td>
<td>No</td>
<td>100% w/cap, 90%*</td>
<td>Borrowing power</td>
</tr>
<tr>
<td>Germany</td>
<td>2002</td>
<td>L, H</td>
<td>0.02% net reserves*</td>
<td>Ante</td>
<td>No</td>
<td>100%*</td>
<td>Ex-post*</td>
</tr>
<tr>
<td>Ireland</td>
<td>1964</td>
<td>NL</td>
<td>Cap 2% of premiums</td>
<td>Post</td>
<td>No</td>
<td>65% w/cap</td>
<td>Borrowing power</td>
</tr>
<tr>
<td>Italy</td>
<td>2006</td>
<td>NL*</td>
<td>5% of premiums</td>
<td>Ante</td>
<td>No</td>
<td>100% w/cap</td>
<td>None</td>
</tr>
<tr>
<td>Japan</td>
<td>1998</td>
<td>L, NL</td>
<td>% of premiums</td>
<td>Ante</td>
<td>No*</td>
<td>80 – 100%</td>
<td>None</td>
</tr>
<tr>
<td>Korea</td>
<td>1996</td>
<td>L, NL</td>
<td>% of premiums</td>
<td>Ante</td>
<td>No</td>
<td>100% w/cap</td>
<td>None</td>
</tr>
<tr>
<td>Latvia</td>
<td>1999</td>
<td>L, NL, H</td>
<td>1% of gross premiums</td>
<td>Ante</td>
<td>No</td>
<td>100%, 50%, both w/cap</td>
<td>None</td>
</tr>
<tr>
<td>Malta</td>
<td>1986</td>
<td>L, NL</td>
<td>0.125% of gross prem.</td>
<td>Ante</td>
<td>No</td>
<td>75% w/cap*</td>
<td>Borrowing power</td>
</tr>
<tr>
<td>Norway</td>
<td>1996</td>
<td>NL</td>
<td>1% of gross premiums</td>
<td>Ante</td>
<td>No</td>
<td>90 – 100%</td>
<td>None</td>
</tr>
<tr>
<td>Poland</td>
<td>1991</td>
<td>L, NL*</td>
<td>1% of gross premiums*</td>
<td>Post*</td>
<td>No</td>
<td>50%, 100%, both w/cap</td>
<td>None</td>
</tr>
<tr>
<td>Romania</td>
<td>2001</td>
<td>L, NL</td>
<td>0.3%, 0.8% of gross pr.*</td>
<td>Ante</td>
<td>No</td>
<td>100%</td>
<td>None</td>
</tr>
<tr>
<td>Spain</td>
<td>2004</td>
<td>L, NL</td>
<td>0.3-3% of premiums*</td>
<td>Ante*</td>
<td>No</td>
<td>Up to 100% w/cap*</td>
<td>None</td>
</tr>
<tr>
<td>U.K.</td>
<td>2001</td>
<td>L, NL</td>
<td>Cap 0.8% of net prem.</td>
<td>Ante</td>
<td>No</td>
<td>90%*</td>
<td>Borrowing power</td>
</tr>
<tr>
<td>U.S.</td>
<td>1983</td>
<td>L&H, P&C</td>
<td>% of premiums*</td>
<td>Post*</td>
<td>No</td>
<td>100% w/cap*</td>
<td>National associations/funds</td>
</tr>
</tbody>
</table>

* see original working paper for details/remarks
Do risk-adequate fund contributions assure advantageousness? – If yes, for whom?

- In the literature / in the current E.U. debate the need for risk-adequate fund contributions is often expressed.
- This is intended to counteract the negative effects of information asymmetries in insurance markets.

- It can be shown that a risk-adequate (source-related) premium assessment is only truly possible in arbitrage-free markets (option pricing framework).
- As far as the guaranty fund stands for diversification of risks, the determination of a risk-adequate (i.e., source-related and arbitrary free) premium is not possible.
- This is due to the fundamental problem of the allocation of (unsystematic) diversification effects.
- Capital transfers between firms are inevitable.

Is an IGS beneficial for policyholders, for the insurance company / equity holders, or for the guaranty scheme (state, tax payers)?
Research focus: Analysis of the impact / incentives following the introduction of IGS

Definition of model framework and analyses

- Model framework with two stakeholders: **policyholders** and **equity holders**
- Consideration of **premium payments** and **claims**, as well as **equity capital endowment**; default risk is explicitly considered
- Starting position: **competitive market with equity-premium equilibrium**

- Risk-adequate equilibrium disturbed by the **introduction of a guaranty scheme**, requiring **ex-ante premium based contributions**
- **Scheme guarantees complete protection (100%) of policyholders claims without cap**
- **Assumption**: **Guaranty funds remains solvent**, if necessary through additional contributions from a third source (e.g., state, tax payers)

- **Incentives for policyholders and insurance companies** immediately after the introduction of the fund
- Implications on the **safety level** of the companies
- **Analysis of three situations with different origin and magnitude of the contributions**
Basic contingent claim model

Policyholders

\[P_1 = \min(L_1, A_1) = L_1 - (L_1 - A_1)^+ \]

\[\Pi_0^P = PV[P_1] = PV[L_1] - PV[(L_1 - A_1)^+] = \Pi_0^L - \Pi_0^{DPO} \]

Insurance company

\[E_1 = A_1 - P_1 = (A_1 - L_1)^+ \]

\[\Pi_0^E = PV[E_1] = PV[(A_1 - L_1)^+] \]

\[P_0 = \Pi_0^P \iff E_0 = \Pi_0^E \]

Notes on model / assumptions

- Model Doherty/Garven (1986)
- Complete and arbitrage-free markets
- Risk-adequate positionig of all stakeholders (policyholders, insurer, IGS)

Valuation using Margrabe/Fischer option pricing formula

Safer companies should pay c.p. lower premiums in the IGS – in a volume-based system this can be reversed!
Results (I/III): Premium-based contribution from insurer incentivizes equity capital reduction

Situation A

- **Policyholders**: $P_0^* = P_0$
- **Equityholders / Insurance company**: $P_1^* = \alpha P_0^*$
- **Insurance Guaranty Fund**: $C_0^* = \alpha P_0^*$

Implications and incentives

- Insureds pay the same premium as before IGS introduction (and get full 100% protection)
- Insurance company pays contribution of α percent of its premium volume
- In case of insurer's insolvency, the guaranty fund pays remaining policyholders claim

For the insurance company to get a "fair" risk-adequate return on the invested capital, an **incentive to reduce the equity capital** arises.

Note on minimum equity capital requirements – companies may stop business / industry may disappear!
Results (II/III): Contributions by policyholders can incentivize changing insurance company

Situation B

- Policyholders pay premium to insurer and fund contribution equal to a fraction α of the premium (see, e.g., special motor liability insurance schemes)
- Insurance company / equity holders not affected directly
- In case of insurer's default, guaranty fund pays remaining policyholders claim

Implications and incentives

From the policyholders perspective the situation strongly depend on the magnitude of the contribution: hence, if the latter exceeds the risk-adequate premium, **insureds are incentivized to choose an insurance company with lowest premium**, i.e. lower safety level / equity capital – to the **detriment of the fund**
Results (III/III): Contribution magnitude defines overall safety level of the insurance companies

Situation C

- Policyholders pay default risk-free premium to the insurer
- Insurance company pays a contribution calculated as a fraction α of the premium volume
- In case of insurer's insolvency, guaranty fund pays remaining policyholders claim

The magnitude of the fund contribution defines the equity capital incentives of the insurers: in the analysed model, the fraction α defines the safety level (equity capital) and sets the target safety equal for all companies
<table>
<thead>
<tr>
<th>Setting</th>
<th>Policyholder position</th>
<th>Equity holder position</th>
<th>Guaranty fund situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Same premium payment $P_0^A = P_0$.</td>
<td>Contribution $C_0^A = \alpha P_0$ to the fund (no charge back to policyholders) leads to negative NPV.</td>
<td>NPV equals $\Pi_0^{DPO} - C_0$.</td>
</tr>
<tr>
<td></td>
<td>Realistic when policyholders are unaware of change of default risk through the introduction of a guaranty fund.</td>
<td>Incentive to lower equity to $E_0^A = E_0^{fair} \leq E_0$ to restore fair situation.</td>
<td>Self-financing only if funds equal insurer’s value of DPO.</td>
</tr>
<tr>
<td></td>
<td>Positive NPV equals value of insurer DPO Π_0^{DPO}.</td>
<td>If E_0^A is not allowed by solvency requirements, business is discontinued.</td>
<td>In case of positive NPV, additional funding is needed (e.g., from a third source).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting</th>
<th>Policyholder position</th>
<th>Equity holder position</th>
<th>Guaranty fund situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Premium $P_0^B = P_0 + C_0^B, C_0^B = \alpha P_0$ as fund contribution.</td>
<td>No contribution to the fund, $E_0^B = E_0$, and NPV is unaffected.</td>
<td>NPV equals $\Pi_0^{DPO} - C_0$.</td>
</tr>
<tr>
<td></td>
<td>NPV equals to $\Pi_0^{DPO} - \alpha \Pi_0^L / (1 - \alpha)$.</td>
<td>In practice insurer would collect policyholder contribution and transfer to fund.</td>
<td>Self-financing only if funds equal insurer’s value of DPO ($\alpha \geq \alpha^{fair}$).</td>
</tr>
<tr>
<td></td>
<td>If $\alpha > \alpha^{fair} = \Pi_0^{DPO} / \Pi_0^L$, incentive to change to insurer with lowest premiums (equity) to restore fair situation.</td>
<td>Reduction of equity to regulatory minimum since policyholders switch to insurers with lowest premiums.</td>
<td>In case of positive NPV, additional funding is needed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting</th>
<th>Policyholder position</th>
<th>Equity holder position</th>
<th>Guaranty fund situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Premium $P_0^C = \Pi_0^L = P_0 + \Pi_0^{DPO}$.</td>
<td>Contribution $C_0^C = \alpha P_0$ to the fund, $E_0^C = E_0$.</td>
<td>NPV equals $\Pi_0^{DPO} - C_0$ (see setting A).</td>
</tr>
<tr>
<td></td>
<td>NPV equals to zero.</td>
<td>NPV zero if $C_0^C = \Pi_0^{DPO}$.</td>
<td>If situation for insurers is fair, fund is self-financing (adequate value of assets in system equity holders-guaranty scheme).</td>
</tr>
<tr>
<td></td>
<td>Policyholders pay default risk-free premium and get full protection through the combination of insurer and guaranty scheme.</td>
<td>If situation is unfair, incentive to adapt (lower) equity capital (and hence increase Π_0^{DPO}) to restore fair situation (if allowed). Parameter α fixes target solvency level.</td>
<td>In case of positive NPV, additional funding is needed.</td>
</tr>
</tbody>
</table>

Fair only if contribution equals value of DPO

Fair only if α is

$$\alpha^{fair} = \frac{\Pi_0^{DPO}}{\Pi_0^L}$$

Fair only if α is

$$\alpha^{fair} = \frac{\Pi_0^{DPO}}{\Pi_0^L}$$

Note: companies are not homogeneous (identical), hence adverse incentives for some
Interaction between Solvency and IGS

- **Numerical illustration of the interaction and relationship**
 Effect of incentives not to be neglected

- **Situation A**
 Incentive: Equity holders lower equity capital in order to reestablish a risk-adequate return with respect to the magnitude α of the IGS contribution

<table>
<thead>
<tr>
<th>Item</th>
<th>Without fund</th>
<th>$\alpha = 0.5%$</th>
<th>$\alpha = 1%$</th>
<th>$\alpha = 2%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity holder capital</td>
<td>67.5</td>
<td>54.2</td>
<td>46.5</td>
<td>36.9</td>
</tr>
<tr>
<td>Available assets</td>
<td>167.0</td>
<td>153.3</td>
<td>145.0</td>
<td>134.4</td>
</tr>
<tr>
<td>Shortfall probability</td>
<td>0.59%</td>
<td>1.34%</td>
<td>2.17%</td>
<td>3.98%</td>
</tr>
<tr>
<td>Expected policyholder deficit</td>
<td>0.08</td>
<td>0.18</td>
<td>0.30</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Conclusion and outlook

• **Adverse incentives after introducing an insurance guaranty scheme if the contributions are not risk-adequate and not all stakeholders contribute**
 Generally, volume-based contributions, which are identical for all companies / customers, lead to adverse incentives
 (Note: risk-adequate premium calculation only possible in this context)

• **Introduction of a fund in a competitive market and calculation of the contribution to be questioned**
 Existing funds mostly charge volume-based contributions
 Risk-weighting – however defined – is not used (exception: Germany with rudimental adjustement)

• **Incentives partially contrary to minimum capital requirements of solvency regulation**
 Undesired incentives imply in most cases a reduction of the equity capital or customers choosing companies with a lower safety level (equity capital) – to the detriment of the fund
Contact information

Prof. Dr. Joël Wagner
E-Mail joel.wagner@unisg.ch
Phone +41 71 224 36 51

Institute of Insurance Economics
University of St. Gallen
Tannenstrasse 19
CH-9000 St. Gallen
http://www.ivw.unisg.ch