Risk Neutral Valuation of With-Profits Life Insurance

Presentation at the 15th International AFIR Colloquium
Zurich, Switzerland

Daniel Bauer
DFG Graduiertenkolleg 1100, University of Ulm

Rüdiger Kiesel
Department of Financial Mathematics, University of Ulm

Alexander Kling
Institute for Financial and Actuarial Science Ulm (ifa)

Jochen Ruß
Institute for Financial and Actuarial Science Ulm (ifa)
Executive Summary

- **Develop Framework in which the following embedded options in participating life-insurance contracts can be evaluated separately**
 - **Interest Rate Guarantee**: Consider surplus distribution mechanism (management rules)
 - **Surrender Option**: Develop valuation model in order to price complex, path-dependent options

- **Practical Implementation**:
 - Prerequisites and Downsides of the risk-neutral approach

- **Key Results**:
 - Guarantees are currently offered below their risk neutral value
 - Financial strength of the insurance company considerably affects value of a contract
Introduction

- **Guarantees in Participating Life Insurance Contracts:**
 - **Year-to-Year Cliquet Style (Ratcheting) Guarantee:** Liabilities (including already credited surplus) earn a guaranteed rate of interest p.a. plus some surplus (if possible)

 → Value of the guarantee depends on *regulatory prerequisites* (guaranteed rate of interest, participation levels) and on the company’s *surplus distribution mechanism* (management decision)

 - **Deferred annuities: Guaranteed annuity factors** (not considered here)

- **Current Problems:**
 - Low interest rates
 - plunging stock markets
 - Insurers are stuck with old, non-hedged guarantees
Introduction (2)

- **Literature:**
 - Mostly focusing on unit-linked products
 - Mostly valuation of contract as a whole – no consideration of the embedded options separately (Implementation?)
 - Most models are not adequate for some markets (e.g. the German market)
 - Mostly, the financial strength of the issuer is not taken into account (e.g. via reserve quota)

- **Target of this paper:** Fill the gap –
 Valuate and Analyze offered guarantees / options of a participating contract in a framework taking into account the prevailing surplus distribution rules (in e.g. the German market) and the financial strength of the issuer
Model

- Insurer’s financial situation

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_t</td>
<td>L_t</td>
</tr>
<tr>
<td>A_t</td>
<td>A_t</td>
</tr>
</tbody>
</table>

- Development of the assets and liabilities (general):

- Market value of assets
- Book value of Policyholder’s account
- Reserves (Valuation Reserves, equity, etc.)

Annual return of the “reference portfolio” A

- “-”: before dividend payment
- “+”: after dividend payment

- Reserve Quota R_{t-1}/L_{t-1}

\[
A_t^- = A_{t-1}^+ (1 + r_t) \\
A_t^+ = A_t^- - D_t \\
L_t = L_t \left(A_t^-, A_{t-1}^+, x_{t-1}, L_{t-1}, \ldots \right) \\
D_t = D_t \left(A_t^-, A_{t-1}^+, x_{t-1}, L_{t-1}, \ldots \right)
\]
Model

- **Considered distribution schemes:**
 1. **MUST-case:**
 - Only obligatory payments considered
 - Year-to-year cliquet style guarantee on the liabilities (minimum rate g)
 - Proportion δ of earnings on book value have to be credited to policyholder’s accounts
 - “Rest” of the earnings on book values paid out as dividend
 - “Rest” of the earnings on market values remains in the company (Reserves)
 - e.g. $BV(\cdot)$ denotes the function transforming earnings on market values to earnings on book values (depends on regulatory framework and management decisions) – for details see paper

\[
L_{t+1} = (1 + g)L_t + [\delta \ BV(A_{t+1}^- - A_t^+) - gL_t]^+
\]

→ **Obligatory payments should be considered in any meaningful valuation – in particular interesting for regulatory organs**
Model(2)

- Considered distribution schemes:
 - 2. IS-case:
 - In addition to obligatory payments, typical surplus distribution schemes of German Insurers are considered (model by Kling/Richter/Russ)
 - Target interest rate \(z \) is credited to the policyholders’ account as long as the reserve quota stays within a given range \([a, b]\)
 - If crediting target rate leads to a quota below \(a \) or above \(b \), the company credits exactly the rate that leads to \(x_t = a \) or \(x_t = b \), respectively (however, the guarantees must still be fulfilled!)
 - Dividends amount to a portion \(\alpha \) of any surplus credited to the policy reserves

→ Such corporate political issues might be of interest for companies’ actuaries as well as for customers, who are interested in the value of their product.
Risk Neutral Valuation

- **General Approach:**
 - **As usual:** There exists a risk neutral measure \(Q \) and a numéraire process \((B_t)_{t\in[0,T]}\)
 - **General pricing formula:** \(P^* = E_Q[B_T^{-1}L_T] \)

- **Problems:**
 1. **Underlying security not traded:** Company’s portfolio is subject to management and investment decisions
 2. **We want to price the embedded option rather than the whole contract:** A possible hedging strategy could not be implemented within the company, since then the underlying would change

- **Solution:**
 1. Approximate reference portfolio by traded benchmark portfolio
 2. Alternative Approach: Price the cash flows
Risk Neutral Valuation(2) - Cash Flow Approach

- **Relevant Cash Flows:**
 - **Dividends** are paid out and reduce the value of the reference portfolio (but not the asset allocation)

 Value:
 \[
 Z_0 = E_Q \left[\sum_{t=1}^{T} B_t^{-1} D_t \right]
 \]

 - If the return of the reference portfolio is so poor, that granting the **minimum interest guarantee** would result in negative reserves, capital is needed in order to fulfill obligations (capital shots \(C_t \)) - they increase the value of the reference portfolio, asset allocation stays the same

 Value:
 \[
 F_0 = E_Q \left[\sum_{t=1}^{T} B_t^{-1} C_t \right]
 \]

 - **Similarly:** Value \(WAO_0 \) of the **Surrender Option** as the supremum of the values of all possible surrenders
Risk Neutral Valuation(3) - Cash Flow Approach

Equilibrium Condition for a fair contract:

\[F_0 + WAO_0 + R_0 = Z_0 + E_Q[B_{T}^{-1}R_T] \]

\[\leftrightarrow P^* = E_Q[B_{T}^{-1}L_T] = L_0 \]

since

\[P^* = E_Q[B_{T}^{-1}L_T] = L_0 + R_0 + F_0 - Z_0 - E_Q[B_{T}^{-1}R_T] + WAO_0 \]
Numerical Analysis

- **Model market** by a geometric Brownian motion \((A)\) with constant volatility and the numéraire \((B)\) by riskless asset with constant interest rate \(r\)

- **Simulation methods:**
 1. **Monte Carlo Simulation:**
 → No consideration of the Surrender Option, but allows for pricing value of Dividends, Interest Guarantee and Reserve-Delta separately

 2. **Discretization Approach (Extension of Lukkarinen and Tanskanen’s (2004) Approach):** Use Black-Scholes PDE in order to solve valuation problem within one period and use arbitrage arguments at the transitions
 → Consideration of the Surrender Option possible
Selected Results - Parameters for the Simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guaranteed rate of interest g</td>
<td>3.5%</td>
</tr>
<tr>
<td>Minimum participation rate δ</td>
<td>90%</td>
</tr>
<tr>
<td>Insurer’s initial reserve quota x_0</td>
<td>10%</td>
</tr>
<tr>
<td>Target interest rate z</td>
<td>5%</td>
</tr>
<tr>
<td>Reserve corridor $[a,b]$</td>
<td>[5%,30%]</td>
</tr>
<tr>
<td>Portion provided to share holders α</td>
<td>5%</td>
</tr>
<tr>
<td>Asset volatility σ</td>
<td>7.5%</td>
</tr>
<tr>
<td>Risk free rate of interest r</td>
<td>4%</td>
</tr>
<tr>
<td>Time horizon T</td>
<td>10 years</td>
</tr>
<tr>
<td>Initial investment L_0</td>
<td>10,000</td>
</tr>
</tbody>
</table>
Selected Results(2) - Values

<table>
<thead>
<tr>
<th></th>
<th>MUST-Case</th>
<th>IS-Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium</td>
<td>10,000.00</td>
<td>10,000.00</td>
</tr>
<tr>
<td>+ Interest Guarantee</td>
<td>+868.42</td>
<td>+998.99</td>
</tr>
<tr>
<td>- Dividends</td>
<td>-238.16</td>
<td>-74.36</td>
</tr>
<tr>
<td>- Reserve-Delta</td>
<td>-275.76</td>
<td>-20.30</td>
</tr>
<tr>
<td>Value of a “European Contract”</td>
<td>10,354.50</td>
<td>10,904.33</td>
</tr>
<tr>
<td>+ Surrender Options</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Value of an “American Contract”</td>
<td>10,354.50</td>
<td>10,904.33</td>
</tr>
</tbody>
</table>
Selected results(3) - Influence of the guaranteed rate g

- Obviously, the value of a contract increases with increasing guaranteed rate.

- However, the level is very high: In the Must-Case, the value of a contract exceeds the insured’s investment at a level of 2.75% (current level) and in the Is-Case even with a 0% guarantee.
Selected results(4) - Influence of the initial reserve quota x_0

- **Is-Case:** The value of a contract increases with increasing reserve quota, since more is paid out if the reserves are high.

- **Must-Case:** Value of a contract also increasing in x_0.

The graph illustrates the relationship between the value of a contract and the initial reserve quota x_0. The graph shows two lines: the solid line represents the **Must-Case** and the dashed line represents the **Is-Case**. As x_0 increases from 0% to 40%, the value of the contract increases for both cases, with the **Must-Case** showing a steeper increase than the **Is-Case**.
Selected Results(4) - Interaction of guaranteed rate g and target rate z

- In order to treat contracts alike (same risk-neutral value), **contracts with a lower guaranteed rate should be granted a higher target rate**, if the reserve situation is good!

- **However**: Relationship depends on other parameters, too: In company with higher reserves, the “slope” is smaller.
Outlook

- **Extensions of our model:**
 - Stochastic interest rate model
 - More advanced model for the underlying assets
 - **Empirical Research:** Is it possible to find an adequate traded benchmark portfolio?
 - **Implementation:** How to hedge the options/guarantees?

THANK YOU!
Backup (1) – Possible Question to Tanskanen/Lukkarinen’s (2004) approach

- Within one period: Black-Scholes Problem → Heat Equation
- \(t=1,2,3,\ldots,T \) – No Arbitrage condition:

\[
\begin{align*}
V(v-, A_{v-1}, A_v, L_{v-1}, x_{v-1}) &= \\
V(v, A_v, A_v, L(A_{v-1}, A_v, L_{v-1}, x_{v-1}), X(A_{v-1}, A_v, L_{v-1}, x_{v-1}))
\end{align*}
\]

- Numerical Implementation: Mesh... know values at \(t+1 \) and solve for values at \(t \)