Area Yield Futures and Futures Options: Risk Management and Hedging.

Knut K. Aase
Norwegian School of Economics and Business Administration
5045 Sandviken - Bergen, Norway

Suppose there exist markets for yield futures contracts as well as ordinary price futures contracts. Intuitively one would think that a combined use of yield futures contracts and price futures contracts ought to provide a reasonable strategy for insuring revenue.

In the paper this is made precise. It is shown that revenue can be approximately locked in by a combined replication of these two contracts. This procedure is *perfect* if the correlation between yield and price is zero. The relevant dynamic strategy is characterized. It depends only on *observable* price information in these two separate markets, not on the specification of parameters in utility functions of the agents involved. The identified dynamic strategy is, under certain conditions, equivalent to optimal revenue insurance. Only market risk is considered.

*Key words: Area yield options, futures, continuous time modelling, quantity and price securing, locking in a certain revenue, CBOT yield contracts*

**Introduction**

In the farming industry as well as for many other primary commodity producers it is possible to effectively manage price risk by the use of futures price contracts and options on futures. However, in many of these industries there is still considerable uncertainty left when it comes to revenue, since quantities produced can be volatile, depending on many factors, such as e.g., weather conditions in the growing season. Until recently, similar market-based instruments for managing yield risk have not been available. Instead, federal agricultural support programs and subsidized crop yield insurance programs
have served as alternatives. In 1995, the Chicago Board of Trade (CBOT) launched its Crop Yield Insurance (CYI) Futures and Options contracts, but at the moment there is no trade in these contracts. Another example is Nord Pool (The Nordic Power Exchange), where financial futures, forward and option contracts are traded. Some of these have characteristics similar to quantity futures due to the nature of electricity trading. Moreover price futures can be combined with Weather Derivatives. Regardless of the status of particular exchanges at the moment, we want to discuss certain principles of quantity futures in combination with price futures. Our focus will be on agricultural contracts, since most of the extant literature deals with this topic.

The CYI contracts are designed to provide a hedge for crop yield risk. For example, CYI futures users can lock in a certain crop yield several months into the future as a temporary substitute for a later yield-based commitment, or they can alternatively try to lock in the revenue of a given acreage by combining yield contracts with futures price contracts. How this can be done is the subject of the present paper.

In the following we abstract from production costs, and assume zero local price basis (i.e., local cash price equals futures price) and zero yield basis (i.e., individual farm yield equals index yield). This is to say, we only address market risk, not idiosyncratic risk in this paper. Intuitively one would think that a combined use of yield contracts and futures price contracts ought to provide a “reasonable” strategy for locking in revenue. In the paper this intuition is made precise. It is shown that revenue can be approximately hedged by a combined, dynamic use of these two markets. This procedure is exact if the correlation between yield and price is zero. Moreover, the relevant strategy is also characterized. This strategy depends only on observable price information in these two separate markets.

There is a large literature on non-market based risk management and insurance of crop yield, mostly within the one period, expected utility framework. Yield contracts have been dealt with from the perspective of hedging, using a mean variance approach by Vukina, Li and Holthausen 1996, while minimizing the variance of revenue was the objective in Li and Vukina 1998. In both these papers the yield contracts traded at CBOT are explained, so we need not elaborate on this market structure here. A more recent paper is Nayak and Turvey 2000, again using a simple mean-variance model. Two other papers try to examine this problem in the expected utility framework (see e.g., Hennessy, Babcock and Hayes 1997; Mahul and Wright 2003). The focus in this paper is somewhat different from these investigations, in that our results are not depending on any specific assumptions about utility functions: Our hedging ratios can be read straight from observed market prices.
However, there are some interesting connections to this literature which we return to below.

Market failures that seem caused by asymmetric information have been dealt with by several authors, among them Chambers 1989, Skees and Reed 1986, Nelson and Loeman 1987, Quiggin 1994 and Goodwin and Smith 1995. There seems to be a tradeoff between moral hazard and basis risk. There is a growing literature that examines this tradeoff (see e.g., Doherty 2000; Doherty and Mahul 2001). CYI contracts, like cat options, do not seem to be widely used among farmers or insurers. One standard explanation is the existence of basis risk, i.e., individual losses are not sufficiently correlated with aggregate losses. In our approach we abstract from asymmetric information.

In a recent paper, Hennessy 2001 discusses the apparent lack of interest in revenue futures by identifying conditions where revenue futures are perfect substitutes for price futures. These conditions hinge upon a nonstochastic relationship between production shock and spot price, not present in our model. However, this is an interesting attempt to explain this phenomenon.

Assuming no transaction costs, basis risk and correlation between yield and price, Mahul and Wright 2003 characterize the optimal indemnity payoff net of the premium for any risk averse agent. Under the same conditions, but with the possibility of continuous resettlement, we demonstrate how to dynamically replicate this optimal indemnity payoff using separate yield and price futures contracts. This shows how essential the possibility of dynamic replication is, in order to achieve an optimal revenue insurance through trade in financial derivatives.

The paper is organized as follows: In the first section we present the dynamic market model, and proceed directly to the main results of the paper. In Theorem 1 (and Corollary 1) we show how a farmer can combine a pure yield futures option (pure yield futures) contract with a pure futures option (pure futures) price contract to lock in a revenue similar to what a farmer could ideally secure if a futures market on revenue were to exist.

Finally we briefly discuss the possibilities to extend the analysis to models containing jumps of unpredictable sizes. This brings us to incomplete financial markets. It turns out that our main results are still valid. The final section concludes.
Area Yield Futures and Options

Introduction

Imagine a country, or another area, sectioned into regions which are uniform in terms of growing conditions for a certain crop, say corn. In each area there is a quantity index \( q_t \), for time \( t \) running from 0 to \( T \), where \( T \) is the time of sale and 0 is the time of sowing. As an example, for the agricultural yield contracts in the USA that were traded at the CBOT, the values of \( q \) were provided by the United States Department of Agriculture (USDA). One may think of \( q_t \) as a forecast at each time \( t \) of quantity, measured in bushels per acre, up for sale in this specific region at the final time \( T \). On this index we assume it is possible to trade futures, and futures options contracts. In order to bring in the quantum uncertainty, we assume that this index can be modeled as a stochastic process. A farmer in this region may have production uncertainty that is well represented by this index, where the relevant number of contracts can be determined from each farmer’s production area.

The idea is that if the producer can buy options on this quantity index or on its corresponding futures index, the farmer can lock in a prespecified quantity by buying an appropriate number of such contingent claims. This strategy is of course only 100% efficient if the farmer’s yield uncertainty is perfectly represented by the index, an unlikely event, but a careful selection of homogeneous regions may make such markets useful for practical risk management purposes. Since agricultural agents are presumably concerned about revenue in the end, rather than solely about yield, or about price, one may think that the yield market may be combined in an appropriate manner with the futures market for crop price to insure a certain revenue. The conditions when this can be done is the topic of this paper.

A private insurance market giving the farmer insurance against quantity shortfall is of course difficult to establish, partly because of the adverse incentives this would create for the farmers, as the rich literature on this topic in agricultural economics journals show. The yield futures market may, however, avoid this difficulty, at least under some presumptions: The agents do not engage in any kind of “collective moral hazard” which effects the yield index, and there is no moral hazard in the construction of the index. There is an implicit assumption that the farmer’s actions do not influence the quantity index to any significant degree. Also the individuals in USDA constructing the index should have no economic interest attached to this market.
The model

Consider two futures markets, one where yield futures options are traded, and one where standard price futures options are traded. The quantity index $q(t)$ at time $t$ is measured in bushels per acre, and spot price $p(t)$ at time $t$ is measured in $\$\text{ per bushel.}$ As earlier explained we abstract from production costs, and assume zero local price basis and zero yield basis. In this case we can define the revenue $R(t) = q(t)p(t)$. A yield futures option contract will specify a real function $g$ so that the payoff from a yield futures option contract at the expiry time $T$ is given by $g(q(T))$ bushels per acre, having yield futures price at time $t < T$ given by

$$F_t^{g[q]} = E_t^Q(g(q(T)) \cdot c).$$

(1)

Here we consider an option on the futures index as a futures contract. \(^1\) To be specific, given is a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\Omega$ is the set of states of nature with generic element $\omega$, $\mathbb{F}$ is a probability measure, the “objective probability”, $\mathcal{F}$ is the set of events in $\Omega$ given by a $\sigma$-algebra, $\mathbb{F} = \{\mathcal{F}_t, 0 \leq t \leq T\}$ is a filtration satisfying the usual conditions, where $\mathcal{F}_s \subseteq \mathcal{F}_t$ if $s \leq t$, $\mathcal{F}_t$ signifying the possible events that could happen by time $t$, or “the information available by time $t$”. We assume $\mathcal{F}_0$ to be trivial, containing only events of probability zero or one, meaning roughly that there is no information available at time zero, and $\mathcal{F}_T = \mathcal{F}$, i.e., at time $T$ all uncertainty is resolved. Here $Q$ appearing in equation (1) is an equivalent martingale measure, assumed to exist, $Q$ being equivalent to the given probability measure $P$ (i.e., the measures $P$ and $Q$ coincide on the null sets). The symbol $E_t$ in (1) is the conditional expectation operator given the “information” $\mathcal{F}_t$ possibly available by time $t$.

The constant $c$ signifies a conversion factor measured in $\$\text{ per bushel, so}$ that the futures price is measured in $\$\text{ per acre.}$ For example, for the Iowa Corn Yield Insurance Futures (ticker symbol CA) the unit of trading is the Iowa yield estimate times $100$ (e.g., a yield of 140.3 bushels per acre gives a contract value of $\$14,030$). In this section we set this conversion factor equal to 1 without loss of generality.

Similarly an ordinary futures option contract on price will specify a real function $h$ so that the corresponding payoff from a futures option contract at expiration is given by $h(p(T))$ $\$\text{ per bushel, and the associated futures price at any time t prior to T is given by } F_t^{h[p]} = E_t^Q(h(p(T))$ measured in $\$\text{ per bushel.}$

Turning to the dynamics of the two processes $p$ and $q$, we assume that the process $q$ for quantity and $p$ for price are both defined on the given
probability space as follows:

\[ dq(t) = \mu_q(t)dt + \sigma_q(t)dB(t) \] (2)

and

\[ dp(t) = \mu_p(t)dt + \sigma_p(t)dB(t), \] (3)

where \( B(t) = (B_1(t), B_2(t)) \) is a standard two dimensional Brownian motion, \( \sigma_q(t) = (\sigma_{q,1}(t), \sigma_{q,2}(t)) \) and \( \sigma_p(t) = (\sigma_{p,1}(t), \sigma_{p,2}(t)) \) are adapted volatility processes satisfying standard \( L^2 \)-type integrability and regularity conditions. Similarly the drift terms \( \mu_q(t) \) and \( \mu_p(t) \) are adapted stochastic processes satisfying standard \( L^1 \)-type integrability conditions.

**The main result**

Consider the product contracts of the form \( R^{gh}(t) = g(q(t))h(p(t)) \). Our revenue process \( R(t) = p(t)q(t) \) would then follow as a special case, when both \( g \) and \( h \) are the identity function. We want to investigate whether we can lock in a prespecified “revenue” \( R^{gh}(t) \) at any time \( t \) prior to the expiration time \( T \) by dynamically trading in the two separate futures options markets described above. To this end imagine first that a separate market for this type of “revenue” were available. The futures price of this contract we denote by \( F^{q(p)h(p)}_t \), and it must be given as follows under our assumptions:

\[ F^{q(p)h(p)}_t = E^Q_t \{ g(q(T)) \cdot h(p(T)) \}, \quad 0 \leq t \leq T. \] (4)

Notice that this can be written

\[ E^Q_t \{ g(q(T)) \cdot h(p(T)) - F^{q(p)h(p)}_t \} = 0, \quad 0 \leq t \leq T, \] (5)

the usual starting point for analyzing futures contracts. Equation (5) implies that if the futures price \( F^{q(p)h(p)}_t \) is agreed upon at time \( t \), then no money changes hands when the futures position is initiated.

In order to better understand what follows, let us recall the main features of a simple futures contract on, say, price. For the holder of one long contract, the payoff at expiration is

\[ \int_t^T 1 \cdot dF_s = F_T - F_t = p_T - p_t \] (6)

by the principle of convergence in the futures market, where \( F_t \) is the futures price of one contract at time \( t \). If an agent holds \( \theta_s \) futures contracts at
time $s$ in the time interval $(t, T]$, the resettlement gain at time $T$ from this strategy would similarly be
\[
\int_t^T \theta_s dF_s. \tag{7}
\]

Consider a strategy that holds $F_s^{g(q)}$ pure futures options on $h(p_T)$, and $F_s^{h[p]}$ pure futures options on $g(q_T)$ at each time $s$ between $t$ and $T$. The resettlement gain from this strategy is given by
\[
\int_t^T F_s^{g(q)} dF_s^{h[p]} + \int_t^T F_s^{h[p]} dF_s^{g(q)}. \tag{8}
\]

Using stochastic integration by parts, this can be written
\[
g(q_T)h(p_T) - (F_t^{g(q)} F_t^{h[p]} + \int_t^T dF_s^{g(q)} dF_s^{h[p]}). \tag{9}
\]

Consider the expression in (9) and compare it to (6) and (7). If it were the case that the term $(F_t^{g(q)} F_t^{h[p]} + \int_t^T dF_s^{g(q)} dF_s^{h[p]})$ is the futures price given in equation (4), it would be the case that the above combined strategy is equivalent to a futures contract on the product $h(p_T)g(q_T)$. Since a futures price at time $t$ must be $\mathcal{F}_t$-measurable, this can not be strictly the case for the above strategy, since the integral naturally does not satisfy this information constraint. On the other hand, if we take the conditional expectation under $Q$, we do indeed get the futures price in question. We now demonstrate this.

To this end, we will need some technical conditions, which we relegate to Appendix 1. Assuming these, we use the following notation: The futures price processes $F_t^{h[p]}$ and $F_t^{g(q)}$ can both be written as smooth functions $a(p_t, t)$ and $b(q_t, t)$ respectively. Denote by $a_p(p, t)$ the partial derivative of the function $a(p, t)$ with respect to its first argument, and similarly for $b_q(q, t)$.

We have the following result:

**Theorem 1** Consider the resettlement gain from the strategy given in (8).

(i) Suppose $\sigma_p(s) \cdot \sigma_q(s) = 0$ for all $s \in (t, T]$, i.e., a zero correlation rate between yield and price. Then this strategy is equivalent to a futures contract on the product $h(p_T)g(q_T)$ having futures price at each time $t$ given by $F_t^{g(q)h[p]}$ in equation (4).

(ii) Consider the general case. The futures price (4) can always be written
\[
F_t^{g(q)h[p]} = F_t^{g(q)} F_t^{h[p]} + E_t^Q \left( \int_t^T dF_s^{g(q)} dF_s^{h[p]} \right) \tag{10}
\]
\[
= F_t^{g(q)} F_t^{h[p]} + E_t^Q \left( \int_t^T a_p(p, s)(\sigma_p(s) \cdot \sigma_q(s))b_q(q, s) ds \right).
\]
Proof: In order to prove (ii) first, according to (5) we have to show that
\[ E_t^Q \left( g(q_T) h(p_T) - (F_t^{g(q)} F_t^{h(p)} + \int_t^T dF_{s}^{g(q)} dF_{s}^{h(p)}) \right) = 0, \quad t \leq T, \quad (11) \]
and this follows, since
\[
E_t^Q \left( \int_t^T F_{s}^{g(q)} dF_{s}^{h(p)} + \int_t^T F_{s}^{h(p)} dF_{s}^{g(q)} \right) = 0 \quad \text{for any} \quad t \leq T \quad (12)
\]
by the standard conditions (20) - (23) of Appendix 1; under these conditions it is known, essentially by H\ölder’s inequality, that the stochastic integrals in (8) both have zero conditional expectations under Q, since \( F_t^{g(q)} \) and \( F_t^{h(p)} \) are both \( Q \)-martingales. Thus we get the conclusion of (ii) from the expression for the futures price in equation (4), the fact that \( F_t^{g(q)} \) and \( F_t^{h(p)} \) are both \( \mathcal{F}_t \)-measurable, and from the representations (18) and (19) of Appendix 1 for the stochastic processes \( a(p_t, t) \) and \( b(q_t, t) \).

Now the conclusion in (i) follows from (ii) just proven, by the expression for the resettlement gain given in (9), since the integral
\[
\int_t^T dF_{s}^{g(q)} dF_{s}^{h(p)} = 0
\]
in this case, combined with the observations in (6) and (7). \( \square \)

Before we comment on this theorem, we briefly describe the situation with pure futures contracts only. Consider a strategy that holds \( F_s^q \) futures contracts on price and \( F_s^p \) futures contracts on quantity at any time \( s \), where \( 0 \leq t \leq s \leq T \), \( t \) signifying the present. The resettlement gain from this strategy is given by
\[
\int_t^T F_{s}^{q} dF_{s}^{p} + \int_t^T F_{s}^{p} dF_{s}^{q}.
\]

We then have the following corollary:

**Corollary 1** Consider the resettlement gain from the strategy that, for any time \( s \) between the present time \( t \) and the expiration time \( T \), holds \( F_s^q \) futures contracts on price and \( F_s^p \) contracts on quantity, given in (13).

(i) Suppose \( \sigma_q(s) \cdot \sigma_p(s) = 0 \), for all \( s \in (t, T] \) i.e., a zero correlation rate between yield and price. Then this strategy is equivalent to a futures contract on revenue \( R_T \) having futures price at each time \( t \) given by \( F_t^R := E_t^Q \{ q(T)p(T) \} \).

(ii) Consider the general case. The futures price \( F_t^R \) can always be written
\[
F_t^R = F_t^{q} F_t^{p} + E_t^Q \left( \int_t^T a_p(p_s, s)(\sigma_p(s) \cdot \sigma_q(s))b_q(q_s, s) ds \right).
\]
Proof: Set \( g(x) = x \) and \( h(x) = x \) for all real \( x \) in Theorem 1. \( \square \)

The above results show that, in the case with a zero correlation rate between yield \( q \) and price \( p \), there is no need for a specialized futures market of, say, revenue \( R = pq \) for someone who has access to the two separate markets for price and yield contracts. One can then, at least in principle, achieve exactly the same results in terms of risk management by simultaneous, dynamic trade in these two markets. Since a dynamic strategy is then needed, needless to say, we here abstract from transactions costs.

In the situation where the correlation \( \sigma_{p,q}(s) := \sigma_p(s) \cdot \sigma_q(s) \) does not vanish for all \( s \in (t, T] \), this strategy would not constitute an exact substitute of a market for revenue. The relevant “correction term” is given by

\[
\left( E_t^Q \{ \int_t^T dF^q_s dF^p_s \} - \int_t^T dF^q_s dF^p_s \right),
\]

(14)

with a similar expression for the futures options case in Theorem 1. The smaller the correction term given in (14) is, the better would the given strategy in (13) constitute a substitute to a futures market for revenue. This term has conditional expected value equal to zero under the measure \( Q \), so it is not a bias in ordinary statistical language, at least not under \( Q \). Obviously, even if the term \( \sigma_{p,q} \neq 0 \), this correction term may still be small. Clearly this term goes to zero as \( t \) approaches \( T \). If \( \sigma_{p,q} = 0 \), the correction term vanishes.

**Examples and Discussion**

The results of Theorem 1 and Corollary 1 do not depend on any specific assumptions about utility functions of the agents (except from some obvious axioms of the preferences in situations like these, like agents prefer more to less). The result is that a futures market for revenue can approximately be obtained through the combination of the two markets for yield and price futures. There exists a dynamic replication strategy in quantity futures and price futures which is, under certain conditions, equivalent to a futures contract on revenue. Moreover, this strategy can be obtained directly from futures price information in these two separate markets. There are no parameters to estimate, no assumptions about the relative risk aversion, or the subjective interest rate, or anything like that. Thus this result could be of practical interest.

The results can perhaps best be illustrated by an example.

Example 1. Consider the case of a zero cross-correlation rate \( \sigma_p(t) \cdot \sigma_q(t) = 0 \) for all \( t \). In this particular case, the strategy \((-F^q, -F^p)\) duplicates exactly
the payoff \((F_t^R - q_T p_T)\) from one short “revenue” contract: At the initiation
time \(t\) the futures prices \(F_t^q\) and \(F_t^p\) are both set such that no money changes
hands.

Instead of the resettlement strategy in \((13)\) let us consider a more “laid
back” strategy that sells \(F_t^p\) quantity contracts, priced at \(F_t^q\) at time \(t \leq T\),
and holds this position until maturity, and sells \(F_t^p\) price contracts, priced at
\(F_t^q\) at time \(t \leq T\), and holds this position till maturity as well.

The payoff at expiration for the hypothetical contract on revenue would be
\((F_t^R - q_T p_T)\), for an agent selling one such contract. On the other hand,
the combined contracts described above would yield the following payoff:
\[
(F_t^p - p_T)F_t^q + (F_t^q - q_T)F_t^p,
\]
where the first term is the payoff of \(F_t^q\) short futures contracts on price \(p\),
and the second term is the corresponding payoff of \(F_t^p\) short contracts on
quantity \(q\).

This latter sum can be seen to be equal to
\[
(F_t^R - q_T p_T) + (F_t^q - q_T)(F_t^p - p_T),
\]
in the situation where \(F_t^R = F_t^q F_t^p\), e.g., when the cross-correlation rate is
zero.

Since \(F_t^q\) can be considered as an “economic forecast” of \(q_T\) at time \(t\),
and similarly is \(F_t^p\) an economic forecast of \(p_T\), the remainder term in \((15)\)
should be “small of second order” (it goes to zero faster than the first term in
\((15)\) as \(t\) approaches \(T\)), in which case this strategy may function reasonably
close to a hypothetical futures market for revenue. Of course, this latter ideal
market does not exist, so this “laid back” arrangement of combining existing
markets for quantity and price separately may be a reasonable substitute.
The strategy described in equation \((13)\) constitutes, on the other hand, a
perfect substitute in this situation. \(\square\)

Assuming no transaction costs, basis risk and correlation between yield
and price, Mahul and Wright 2003 characterize the Pareto optimal indemnity payoff
net of the premium for any risk averse agent, and risk neutral insurer.
It is shown to be \((F_t^R - q_T p_T)\). This argument requires risk neutral pric-
ing, which in our model amounts to equating the risk adjusted probability
measure \(Q\) and the given one \(P\). As a consequence of this, market prices
are determined as \(F_t^R = E_t(p_T)E_t(q_T)\), and the optimal revenue insurance
has payoff \((E_t(p_T)E_t(q_T) - q_T p_T)\). From the relation in \((15)\) it is seen that
this payoff results, plus the correction term, the latter caused by the sell and
hold strategy. If the dynamic resettlement strategy \((13)\) is used instead, the
correction term vanishes, and the optimal payoff is exactly achieved. This
demonstrates an interesting connection to optimal insurance coverage, showing that the Pareto optimal net indemnity payoff can be replicated by using separate yield and price futures contracts.²

Jump/diffusion uncertainty model

In a companion paper we give an example of a model for the price of the crop, \( p_t \), and the quantity index \( q_t \), as well as a valuation model where market prices can be found for a large class of relevant financial contracts. In other words, we give an example how to construct an equivalent martingale measure \( Q \) for yield contracts. Since we have chosen an Itô process framework, this is done by judiciously transforming to two price processes (\( q \) is not a price process), and then it is natural to choose a complete model, in which case we have to solve a linear system of equations, and use Girsanov’s theorem to establish a unique market-price-of-risk process (see Aase 2002).

Suppose instead that we imagine agricultural yields are exposed to natural disasters and thus it seems natural to include more dramatic changes than continuous ones in the process dynamics for \( p \) and \( q \). Consider the following dynamics

\[
 dq(t) = \mu_q(t)dt + \sigma_q(t)dB(t) + \int_{R^2} \gamma_q(t, z)\tilde{N}(dt, dz) \tag{16}
\]

and

\[
 dp(t) = \mu_p(t)dt + \sigma_p(t)dB(t) + \int_{R^2} \gamma_p(t, z)\tilde{N}(dt, dz). \tag{17}
\]

Here \( \tilde{N}(dt, dz) = N(dt, dz) - \nu(dz)dt \) signifies a compensated Poisson random measures of an underlying two dimensional Levy process, independent of the two dimensional Brownian motion \( B \), and \( \nu(dz) \) is the associated Levy measure. The idea is that jumps of random sizes \( \gamma_i(t, z) \) occur at unpredictable time points of a Levy process, \( i = p, q \). If a jump happens to take place at time \( t \), and the underlying jump size of the Levy-process is \( z = (z_p, z_q) \), then the jump size in the quantity index \( q \) is \( \gamma_q(t, z) \), and in the price process \( p \) the corresponding jump size is \( \gamma_p(t, z) \). Without going into further technical details, we note the following: This class of models is obviously very general, and can be made to fit well most observed time series of data one can imagine. There is an integration by parts formula also for the type of processes given in the equations (16) and (17) above. Since this is an essential part of the proof of Theorem 1, our results in Theorem 1 and Corollary 1 can still
be shown to be valid. In the uncorrelated cases (i) in both results we now have in addition that

\[
\int_{\mathbb{R}^2} \gamma_p(s, z)\gamma_q(s, z)\nu(dz) = 0
\]

for all \( s \in (t, T] \).

In the above model we are not able to construct a unique market-price-of-risk process as in the above mentioned companion paper, so there will exist many equivalent martingale measures \( Q \) (indeed, uncountable many) that will do for pricing purposes, even if no arbitrage prevails. All these measures will coincide on the marketed subspace \( M \subset L^2 \) containing all the random payoffs of the type that can be generated by portfolio formation of two different, correlated assets with pricing processes like the one in (16). However, for contingent claims with components in the orthogonal complement \( M^\perp \) of \( M \) (here \( L^2 = M \oplus M^\perp \)), these components can not be hedged by the existing financial instruments. As a consequence we do not have a good pricing theory for this part, and the measures \( Q \) will normally not coincide on \( M^\perp \). Thus our resulting model is incomplete.

But this is of no concern to the present results. The agent can still observe the prices in the two separate futures markets, construct the dynamic strategy as time goes, and replicate the payoff of a futures (or a futures option) contract on revenue to the degree that we have explained above. Thus our results are robust to the modelling of uncertainty - more interesting models than Ito-processes can be used, in principal there are no major restrictions (other than technical ones). Hence market completeness is not required for the main results to hold.

Conclusions

We have presented a dynamic model for the analysis of futures contracts on quantity and futures contracts on price in separate markets for such contracts, in order to construct futures contracts on revenue. Only market risk is considered.

It is shown how an agent can lock in a certain revenue by a combined trade in futures price and futures yield contracts, abstracting from production costs. This can be done perfectly if the correlation between yield and price is zero, otherwise the procedure is only approximate and a correction term is identified. The main result does not depend on the particular choice of model for the random dynamics. As a consequence the result is independent of a complete market structure, and thus fairly robust. The identified dynamic
strategy is, under certain conditions, equivalent to a Pareto optimal revenue insurance.

Our results do not depend upon any specific assumptions about utility functions, relative risk aversions, subjective discount rates, and the like. The main results are thus possible to implement in practice.

References


Appendix 1

Here we present the technical conditions needed for Theorem 1:

The futures price processes $F_i^{[q]}$ and $F_i^{[y]}$ can be both be written as some $C^{2,1}(\mathbb{R}^2 \times [0, T])$-functions $a(q_t, t)$ and $b(y_t, t)$, say. Since they are both $Q$-martingales, by Ito’s lemma

\[
da(q_t, t) = a_q(q_t, t)\sigma_q(t)dB(t) \tag{18}
\]

\[
db(y_t, t) = b_y(y_t, t)\sigma_y(t)d\tilde{B}(t), \tag{19}
\]

where $a_q(q, t)$ means the partial derivative of the function $a(q, t)$ with respect to its first argument, and similarly for $b_y(y_t, t)$, and where $B$ is a standard two dimensional Brownian motion with respect to the measure $Q$. We will now need the following technical conditions: We suppose the processes $a(q_t, t)$ and $b(y_t, t)$ satisfy the following:

\[
\int_0^T (b(y_t, t)a_q(q_t, t))^2 (\sigma_{q,1}(t)^2 + \sigma_{q,2}(t)^2)dt < \infty \quad a.s. \tag{20}
\]

\[
E\left(\int_0^T (b(y_t, t)a_q(q_t, t))^2 (\sigma_{q,1}(t)^2 + \sigma_{q,2}(t)^2)dt\right) < \infty \tag{21}
\]

and

\[
\int_0^T (a(q_t, t)b_y(y_t, t))^2 (\sigma_{y,1}(t)^2 + \sigma_{y,2}(t)^2)dt < \infty \quad a.s. \tag{22}
\]

\[
E\left(\int_0^T (a(q_t, t)b_y(y_t, t))^2 (\sigma_{y,1}(t)^2 + \sigma_{y,2}(t)^2)dt\right) < \infty. \tag{23}
\]
Notes

1Alternatively it could be an option contract requiring an initial cash payment, or a hybrid.

2I would like to thank one referee for pointing out this possibility.