SOLVENCY MEASURE FOR PENSION LIABILITIES: time, inflation and longevity

Prof. Pierre DEVOLDER
(Catholic University Louvain – UCL)
Madrid - AFIR 2011
PRM = PENSION + ERM
The Solvency Issue

INSURANCE → SOLVENCY 2
BANKS → BASEL 2 / 3
PENSION FUNDS → ???

IAS Norms: Best estimate approach; not risk based!
Outline

• 1. Pension and solvency
• 2. Market risk Model
• 3. Risk Measure Approach
• 4. Probability of ruin Approach
• 5. Introduction of the Longevity Risk
• 6. Extension to DB schemes
1. Pension and solvency
Risk mapping of pension liabilities:

- **MARKET RISKS**:
 - discount in the Actuarial Liabilities
 - return on the Assets

- **ECONOMICAL RISKS**:
 - inflation and salary increase

- **DEMOGRAPHIC RISKS**:
 - longevity risk
 - withdrawal risk

+ Long term aspect !!!
DB versus DC Pension schemes:

In DC Schemes (Defined Contribution Pension Schemes where the only liability of the sponsor is to pay a well defined level of contribution), risks are essentially transferred to the affiliates.

Market risk can be present in case of guarantee of a minimum rate of return on the contributions.

In DB Schemes (Defined Benefit Pension Schemes where the sponsor promises a well defined level of benefit at retirement), risks are clearly the problem of the sponsor!!
We consider a **pension investment product** (DC plan) with a fixed minimum guaranteed return given at retirement.

Notations:

- \(P=1 \) : initial pension account at time \(t=0 \)
- \(N \) : maturity of the pension account
- \(i \) : fixed guaranteed return
- \(r \) : risk free rate
- \(L(N) \) : liability at retirement age
On the asset side we assume the insurer invests the initial contribution in a risky asset.

\[A(t) = \text{asset at time } t \ (\text{stochastic evolution}) \]

\[A(N) \text{ is a random variable} \ldots \]
3 fundamental issues in **DC / Funding** for the affiliates:

1°) the optimal investment strategy of the contributions: *risk / return*

2°) An eventual minimum guaranteed return

3°) the payment of the benefits: *lump sum or annuity*
Problem 1: Solvency at maturity:

Ability of the fund to fulfill the guarantee only *at maturity* and *without any additional equity*

Probability of no default at maturity:

Assets must be enough only at maturity to match the liability:

\[P(A(N) \geq L(N)) \]
Problem 2: Risk measure at maturity:

Ability of the fund to fulfill the pension guarantee only at maturity *with eventual additional equity*

EXAMPLE: Static value at risk:

Initial amount \(C \) to put in the fund in order to guarantee with a high probability the liability at maturity:

\[
P(A(N) + Ce^{rN} \geq L(N)) \geq \alpha \quad (99\%)
\]
Problem 3: Ruin theory approach:

Ability of the fund to fulfill the guarantee *at any time* with eventual additional equity (provision approach)

EXAMPLE: Probability of ruin:

Reserve process:

\[R(s) = A(s) + C_e^{rs} - L(s) \]

for: \(0 \leq s \leq N \)

with: \(A(s) = \) market value of Assets at time \(s \)
\(C = \) initial solvency Capital at time \(0 \)
\(L(s) = \) value of Liabilities at time \(s \) (??)
Problem 3: Ruin theory approach (2):

Initial own funds C to put in the pension fund in order to guarantee with a high probability the solvency at any time before maturity:

$$\phi(C) = P(R(s) \geq 0, \forall s \in [0, N])$$

The initial capital C is then chosen such that:

$$\phi(C) \geq \alpha$$
2. Market Risk Model
Assumptions:

Existing amount at time $t=0$

$S(0)=1$

$x=30$ $x=50$ $x=65$

time t

t=N
Maturity (retirement age)

$S(t, N) =$ value of the asset at time t for a maturity N
Model:

Risky asset:
\[dX(t) = \delta X(t) \, dt + \sigma X(t) \, dw(t) \]

Riskless asset:
\[dB(t) = r \, B(t) \, dt \]

Mixing:
\[\alpha(t, N) = \text{part invested at time } t \text{ in the risky asset for a maturity } N \text{ (measurable process)} \]
Stochastic differential equation of the mixed asset:

\[dS(t, N) = (\alpha(t, N) \cdot \delta + (1 - \alpha(t, N)) \cdot r) \cdot S(t, N) \, dt + \alpha(t, N) \cdot \sigma \cdot S(t, N) \, dw(t) \]

The solution of this equation is given by:

\[S(t) = S(0) \cdot \exp((r \cdot t + (\delta - r) \int_0^t \alpha(s) \, ds - \frac{\sigma^2}{2} \int_0^t \alpha^2(s) \, ds + \sigma \int_0^t \alpha(s) \, dw(s))) \]

Investment strategy = how to choose the process \(\alpha(t) \)?
Mixed strategy

We consider 3 deterministic investment strategies mixing:

- a risky asset (stocks, options,...)
- a riskless asset (bonds)

Strategy 1: **Constant proportion portfolio**
Strategy 2: **Linear decreasing strategy**
Strategy 3: **Lifecycle strategy**
Constant proportion portfolio

Fixed constant proportion in the risky asset during all the horizon (MERTON: optimal strategy using utility function arguments)

1 parameter: - constant proportion
Linear decreasing strategy

Linear decreasing proportion in the risky asset during all the horizon

1 parameter : - initial proportion
Lifecycle strategy

Fixed constant proportion in the risky asset during a first period (accumulation phase) and then linearly decreasing until retirement (consolidation phase)

2 parameters:
- initial proportion
- consolidation period M
Constant proportion portfolio

\[\alpha(t) = \gamma \quad \forall 0 \leq t \leq N \]

For instance: \(\gamma = 50\% \)

Solution:

\[S(t, N) = S(0).\exp((r + \gamma(\delta - r))t - \gamma^2\sigma^2 t / 2 + \gamma\sigma.w(t)) \]

Independent of the maturity for a fixed time \(t \)!

Mean:

\[ES(t, N) = S(0).\exp((r + \gamma(\delta - r))t) \]
Constant proportion portfolio

Amount at retirement age (maturity t=N):

\[S(N, N) = S(0) \exp\{N(m(N), V^2(N))\} \]

with:

\[m(N) = rN + \gamma(\delta - r)N - \sigma^2 \gamma^2 N / 2 \]
\[V^2(N) = \sigma^2 \gamma^2 N \]

Mean:

\[ES(N, N) = S(0) \exp(rN + \gamma(\delta - r)N) \]
Linear decreasing strategy

\[\alpha(t) = \beta \cdot (1 - \frac{t}{N}) \quad \forall 0 \leq t \leq N \]

For instance: \(N = 20 \)
\(\beta = 70\% \)

\[\begin{align*}
\alpha(0) &= 70\% \\
\alpha(5) &= 52.5\% \\
\alpha(10) &= 35\% \\
\alpha(15) &= 17.5\% \\
\alpha(20) &= 0\%
\end{align*} \]
Linear decreasing strategy

Amount at retirement age (t=N):

\[S(N, N) = S(0). \exp\{N(m(N), V^2(N))\} \]

with:

\[m(N) = r.N + \beta.(\delta - r).N/2 - \sigma^2 \beta^2 N/6 \]
\[V^2(N) = \sigma^2 \beta^2 N/3 \]

Mean:

\[ES(N, N) = S(0). \exp(r N + \beta(\delta - r)N/2) \]
Lifecycle strategy

$$\alpha(t) = \alpha \quad \text{for} \quad 0 \leq t \leq N - M$$

$$\frac{\alpha}{M}(N - t) \quad \text{for} \quad N - M \leq t \leq N$$

For instance:

\[
\begin{align*}
N &= 30 \\
M &= 15 \\
\alpha &= 70\%
\end{align*}
\]

\[
\begin{align*}
\alpha(0) &= 70\% \\
\alpha(5) &= 70\% \\
\alpha(10) &= 70\% \\
\alpha(15) &= 70\% \\
\alpha(20) &= 47\% \\
\alpha(25) &= 23\% \\
\alpha(30) &= 0\%
\end{align*}
\]
Lifecycle strategy

Amount at retirement age (t=N): first case: N > M (accumulation phase)

\[S(N, N) = S(0). \exp\{N(m(N), V^2(N))\} \]

with:

\[m(N) = r \cdot N + \alpha.(\delta - r).(N - M/2) - \sigma^2 \alpha^2 (N - 2M/3)/2 \]
\[V^2(N) = \sigma^2 \alpha^2 (N - 2M/3) \]

Mean:

\[ES(N, N) = S(0). \exp(r N + \alpha.(\delta - r)(N - M/2)) \]
Lifecycle strategy

Amount at retirement age (t=N) : second case : \(N < M \)

(consolidation phase)

\[
S(N, N) = S(0). \exp\{N(m(N), V^2(N))\}
\]

with:

\[
m(N) = r.N + \alpha.(\delta - r).N^2 / 2M - \sigma^2 \alpha^2 N^3 / 6M^2
\]

\[
V^2(N) = \sigma^2 \alpha^2 N^3 / 3M^2
\]

Mean:

\[
ES(N, N) = S(0). \exp(rN + \alpha(\delta - r)N^2 / 2M)
\]
3. Risk Measure Approach
Maturity guarantee

Comparison of these 3 strategies:

Matching between the final asset at maturity $S(N,N)$ and the minimum maturity guarantee $L(N)$

| Asset: $S(N,N)$ | Liability: $L(N) = e^{r_G \cdot N}$ |

(r_G = guaranteed rate at maturity)
Probability of default

In the 3 considered strategies, the asset at maturity can be written as:

\[
S(N, N) = S(0) \cdot e^{N(m(N), V^2(N))}
\]

Then the probability of default at maturity becomes:

\[
\Psi(N) = P(S(N, N) < L(N))
= P\left(e^{N(m(N), V^2(N))} < e^{r_G N} \right)
= \Phi\left(\frac{r_G N - m(N)}{V(N)} \right) = \text{NORMSDIST}\left(\frac{r_G N - m(N)}{V(N)} \right)
\]
Probability of default - constant

Strategy 1: constant proportion portfolio:

\[\Psi_1(N) = \Phi(\sqrt{N} \cdot \frac{r_g - (r + \gamma(\delta - r) - \gamma^2 \sigma^2 / 2)}{\gamma \sigma}) \]

\[= \Phi(\sqrt{N} \cdot a(\gamma)) \]

The number \(a(\gamma) \) is in general negative.
So this probability decreases (deeply!) with the maturity \(N \).
Probability of default - constant

EXAMPLE:

$\alpha(t) = 70\%$

$\delta = 7\% \quad \sigma = 15\%$

$r = 3\% \quad r_G = 1\%$

Constant proportion portfolio
Probability of default - linear

Strategy 2 : linear decreasing strategy :

$$\Psi_2(N) = \Phi(\sqrt{3N}. \frac{r_G - (r + \beta(\delta - r)/2 - \beta^2 \sigma^2/6)}{\beta \sigma})$$

$$= \Phi(\sqrt{N}.b(\beta))$$

The number $b(\beta)$ is in general negative .
So this probability decreases also with the maturity N.
Probability of default - linear

EXAMPLE:

\[\alpha(t) = 70\% \]
\[\delta = 7\% \quad \sigma = 15\% \]
\[r = 3\% \quad r_G = 1\% \]

Linear decreasing strategy
Probability of default - lifecycle

Strategy 3: lifecycle strategy:

\[\Psi_3(N) = \Phi(M \sqrt{3} \left(\frac{r_G N - (rN + \alpha(\delta - r)N^2 / 2M - \sigma^2 \alpha^2 N^3 / 6M^2)}{\alpha \sigma \sqrt{N^3}} \right)) \]

\[\Psi_3(N) = \Phi(\frac{r_G N - (rN + \alpha(\delta - r)(N - M / 2) - \sigma^2 \alpha^2 (N - 2M / 3) / 2)}{\alpha \sigma \sqrt{N - 2M / 3}}) \]

- \(N < M \):

- \(N > M \)
Probability of default – life cycle

EXAMPLE:

\[
\alpha(t) = 70\%
\]
\[
\delta = 7\%\quad \sigma = 15\%
\]
\[
r = 3\%\quad r_G = 1\%\quad M = 15
\]

Life cycle probabilities

Devolder - AFIR Madrid 2011
Constant proportion portfolio - probability
(for different levels of guarantee)

Graph:

- **Title:** Probability of default
- **X-axis:** Time (years)
- **Y-axis:** Probability of default (%)
- **Legend:**
 - 0%
 - 1%
 - 2.50%
 - 3.25%
 - 3.75%

The graph illustrates the probability of default for different levels of guarantee over time.
Value at risk - constant

We define the solvency level $C(N)$ as the initial amount of equity invested in the riskless asset such that at maturity:

$$P(S(N,N) + C(N).e^{rN} < L(N)) = \varepsilon_N$$

where:

$$S(N,N) = e^{N(m(N),V^2(N))}$$

$$L(N) = e^{rG_N}$$

$$\varepsilon_N = \text{safety level (for instance: 0.5\%)}$$
Value at risk-constant

The solvency capital is then given explicitly by:

\[C(N) = e^{(r_G-r)N} - e^{-rN} \cdot e^{m(N)+z_N \cdot V(N)} \]

(where: \(P(N(0,1) < z_N) = \varepsilon \))

For instance for the constant proportion portfolio:

\[C(N) = e^{(r_G-r)N} - e^{-rN} \cdot e^{rN+\gamma(\delta-r)N-\gamma^2\sigma^2N/2+z_N \cdot \gamma \sigma \sqrt{N}} \]
\[1 - \varepsilon_N = (0.995)^N \]

\[r_G = 1\% \quad r = 3\% \]
\[\delta = 7\% \quad \gamma = 70\% \]
\[\sigma = 15\% \]
Constant proportion portfolio - solvency

(for different levels of guarantee)
4. Probability of Ruin Approach
4.1. Probability of ruin without capital

We try to compute the probability of non ruin without any extra capital:

\[
P(N) = P(A(t) \geq L(t), \forall t \in [0, N])
\]

With a pure equity strategy first:

\[
A(t) = \exp(\delta t + \sigma w(t) - \sigma^2 t / 2)
\]
\[
L(t) = e^{r_G t}
\]
This probability can be written using a minimum condition on a geometric Brownian motion:

\[
P(A(t) - L(t) \geq 0, \forall t \in [0, N])
= P\left(e^{(\delta - \sigma^2/2)t + \sigma w(t)} \geq e^{r_G t}, \forall t \in [0, N] \right)
= P\left(\min_{0 \leq s \leq N} e^{(\delta - r_G - \sigma^2/2)s + \sigma w(s)} \geq 1 \right)
= 1 - P\left(\min_{0 \leq s \leq N} e^{(\delta - r_G - \sigma^2/2)s + \sigma w(s)} < 1 \right)
\]

Distribution function of the minimum of a geometric Brownian motion
Theorem:

Law of the minimum of a geometric Brownian motion.

Let:

\[S(t) = e^{(\mu - \sigma^2/2)t + \sigma w(t)} \]

\[z = \min_{0 \leq s \leq t} \{ S(s) \} \]

\[0 < L \leq S(0) \]

Then:

\[P(z \leq L) = \Phi(d_1) + L^{\frac{2\mu}{\sigma^2} - 1} \cdot \Phi(d_2) \]

with:

\[d_{1,2} = \frac{\ln L + (\mu - \sigma^2/2)t}{\sigma \sqrt{t}} \]
Computation of the probability of non ruin:

\[P(N) = P(A(t) - L(t) \geq 0, \forall t \in [0, N]) \]

\[= 1 - P(\min_{0 \leq s \leq N} e^{(\delta - r_G - \sigma^2/2)s + \sigma w(s)} < 1) \]

\[= 1 - \left(\Phi\left(\frac{-(\delta - r_G - \sigma^2/2)N}{\sigma \sqrt{N}} \right) + \Phi\left(\frac{(\delta - r_G - \sigma^2/2)N}{\sigma \sqrt{N}} \right) \right) \]

\[= 0 \]

Under these assumptions the ruin is certain !!!
Variant 1: partial solvency requirement before maturity (surrender charges in life insurance)

\[P(A(t) \geq e^{r_G t} ; \forall t \in [0, N]) \]

- \(P(A(t) \geq \rho(t) e^{r_G t} ; \forall t \in [0, N]) \)

- **Liquidity penalty**

- \(\rho \) increases in \(g \)
 - \(\rho(t) \leq 1 \)
 - \(\rho(N) = 1 \)

Example:

\[\rho(s) = e^{-\lambda(N-s)} \]

\((\lambda > 0) \)
The solvency requirement becomes then:

\[P(N, \lambda) = P(A(t) \geq e^{-\lambda N} \cdot e^{(r_G + \lambda) t}; \forall t \in [0, N]) \]

Introducing the minimum:

\[
P(N, \lambda) = P(\min_{0 \leq s \leq N} e^{(\delta - r_G - \lambda - \sigma^2/2)s + \sigma w(s)} \geq e^{-\lambda N})
\]

\[
= 1 - P(\min_{0 \leq s \leq N} e^{(\delta - r_G - \lambda - \sigma^2/2)s + \sigma w(s)} < e^{-\lambda N})
\]

\[L < 1 \]
The probability of non-ruin becomes now:

\[
P(N, \lambda) = P(A(t) \geq e^{-\lambda(N-t)}.L(t), \ \forall t \in [0, N]) \\
= 1 - \{ \Phi\left(\frac{-\lambda N - (\delta - r_G - \lambda - \sigma^2 / 2)N}{\sigma \sqrt{N}} \right) \\
+ (e^{-\lambda N})^\frac{2(\delta-r_G-\lambda)}{\sigma^2} - 1 \right) \Phi\left(\frac{-\lambda N + (\delta - r_G - \lambda - \sigma^2 / 2)N}{\sigma \sqrt{N}} \right) \}
\]
The probability of ruin can be written:

\[\Psi(N, \lambda) = 1 - P(N, \lambda) \]

\[= \Phi\left(\frac{-(\delta - r_G - \sigma^2/2)N}{\sigma \sqrt{N}}\right) \]

\[+ \left(e^{-\lambda N}\right)^{\frac{2(\delta - r_G - \lambda)}{\sigma^2}} \cdot \Phi\left(\frac{(\delta - r_G - 2\lambda - \sigma^2/2)N}{\sigma \sqrt{N}}\right) \]

\[= \Phi(a \sqrt{N}) + \left(e^{-\lambda N}\right)^{\frac{2(\delta - r_G - \lambda)}{\sigma^2}} \Phi\left((-a - 2\lambda/\sigma)\sqrt{N}\right) \]

Probability of default at maturity
Price of non ruin before maturity
Constant portfolio allocation:

We can also analyze the influence of the asset allocation on this last probability of non ruin:

\[\delta \rightarrow \gamma \delta + (1 - \gamma) r \]

\[\sigma \rightarrow \gamma \sigma \]

\[
P(N, \lambda, \gamma) = P(A(t) \geq e^{-\lambda(N-t)}.L(t), \ \forall t \in [0,N])
\]

\[
= 1 - \left\{ \Phi\left(-\frac{-(\gamma \delta + (1 - \gamma) r - r_G) - \gamma^2 \sigma^2 / 2) N}{\gamma \sigma \sqrt{N}} \right) \right\}
\]

\[
+ \left(e^{-\lambda N} \right) \frac{2((\gamma \delta + (1 - \gamma) r - r_G - \lambda)}{\gamma^2 \sigma^2} \Phi\left(\frac{((\gamma \delta + (1 - \gamma) r - r_G) - 2 \lambda - \gamma^2 \sigma^2 / 2) N}{\gamma \sigma \sqrt{N}} \right)
\]
Variant 2 : Fair Valuation approach

Another possibility for the liability function is to introduce the fair value of the final liability (**present value at the risk free rate**):

\[
L(N) = e^{r_G N}
\]

\[
L(t) = e^{-r(N-t)}L(N) = e^{-r(N-t)}e^{r_G N}
\]

\[
= e^{-(r-r_G)(N-t)}e^{r_G t}
\]

\[
= e^{-\lambda^*(N-t)}e^{r_G t}
\]

This is a particular case of variant 1 with exponential penalty parameter given by:

\[
\lambda^* = r - r_G
\]

(spread of rates)
This coefficient is positive if the risk free rate is strictly higher than the guaranteed rate.

Then the probability of ruin becomes for a constant strategy:

$$\Psi(N, \gamma) = \Phi(a(\gamma)\sqrt{N})$$

$$+ \left(e^{-(r-r_G)N} \right)^{2\gamma(\delta-r)} - 1$$

$$\Phi\left(\frac{-a(\gamma) - 2(r - r_G)}{\gamma\sigma} \sqrt{N} \right)$$

If the two rates are close, the coefficient λ is nearly zero and this probability is nearly equal to one (for every time horizon).
Probability of ruin – constant
(fair valuation approach)

EXAMPLE:

\[\alpha(t) = 70\% \quad \lambda = 2\% \]
\[\delta = 7\% \quad \sigma = 15\% \]
\[r = 3\% \quad r_G = 1\% \]
4.2. Probability of ruin with riskless capital

We consider now the probability of non ruin, starting with a positive solvency capital assumed to be invested in a riskless asset and the contribution invested in the risky asset:

\[P(N, C) = P(A(t) + C.e^{rt} \geq L(t), \forall t \in [0, N]) \]

Or with a partial solvency requirement:

\[P(N, \lambda, C) = P(A(t) + C.e^{rt} \geq e^{-\lambda(N-t)} L(t), \forall t \in [0, N]) \]
Computation of the probability of non ruin:

In general the problem is not so trivial and can no more be written as the law of the minimum of a geometric Brownian motion …

\[
P(N, \lambda, C) = P(A(t) + C.e^{rt} \geq e^{-\lambda(N-t)}L(t), \ \forall t \in [0, N])
\]

\[
= P(e^{(\delta-\sigma^2/2)t+\sigma w(t)} \geq e^{-\lambda N}e^{(r_G+\lambda)t} - C.e^{rt}, \ \forall t \in [0, N])
\]

We can obtain an explicit form in the fair value case:

\[
\lambda^* = r - r_G
\]

Then we can write:

\[
P(N, \lambda^*, C) = P(e^{(\delta-r_G-\lambda^*-\sigma^2/2)t+\sigma w(t)} \geq e^{-\lambda^* N} - C, \ \forall t \in [0, N])
\]
Using the previous results we obtain for the probability of ruin:

\[\Psi(N, \lambda^*, C) = 1 - P(N, \lambda^*, C) = 1 - P(A(t) \geq e^{-\lambda^*(N-t)} \cdot L(t), \ \forall t \in [0, N]) \]

\[= \Phi\left(\frac{\ln(e^{-(r-r_G)N} - C) - (\delta - r - \sigma^2 / 2)N}{\sigma \sqrt{N}}\right) \]

\[+ \left(e^{-(r-r_G)N} - C\right)^{2(\delta-r)} \cdot \Phi\left(\frac{\ln(e^{-(r-r_G)N} - C) + (\delta - r - \sigma^2 / 2)N}{\sigma \sqrt{N}}\right) \]

With: \(\Psi(N,0,0) = 1 \)

Without capital and without spread you are sure to be ruined !!!
5. Introduction of the Longevity Risk
Introduction of a longevity condition:

The pension liability is paid at retirement age only in case of survival.

The guarantee takes now into account a pre defined life table based on a deterministic mortality intensity:

\[
N p_x = \text{Proba to survive } N \text{ years between } x \text{ and } x + N
= \exp - \int_{0}^{N} \mu_{x+s} \, ds
\]
The minimum pension benefit to pay in case of survival at retirement age is now given by:

\[B(N) = \frac{e^{r_G N}}{N \, p_x} = e^{\int_0^N (r_G + \mu_{x+s}) \, ds} \]

For this “a priori” life table we will use a classical Gompertz law:

\[\mu_{x+s} = \mu_x \cdot e^{\beta s} \]
On the other hand we assume that the real death intensity will follow an Ornstein- Uhlenbeck stochastic process given by:

\[d\lambda_x(t) = a \lambda_x(t) \, dt + \rho \, dw_x(t) \]

The solution of this classical SDE is given by:

\[\lambda_x(t) = \lambda_x e^{at} + \rho \int_0^t e^{a(t-s)} \, dw_x(s) \]
Assuming as before an initial contribution of 1 € paid at time t=0, the asset – liability structure for a pure equity strategy (or a constant proportion portfolio), is now given by:

\[
A(N) = e^{(\delta - \frac{\sigma^2}{2})N + \sigma \cdot w(N)} \\
L(N) = B(N) \cdot e^{-\int_0^N \lambda_x(s) \, ds} = e^{r_G N} \cdot e^{\int_0^N (\mu_{x+s} - \lambda_x(s)) \cdot ds}
\]

Asset and Liability are now both stochastic !!!
Probability of default at maturity
(taking into account market and longevity risks)

\[P(A(N) < L(N)) = P\left(e^{(\delta - \sigma^2/2)N + \sigma w(N)} < e^{r_G N + \int_0^N (\mu_{x+s} - \lambda_x(s)) \, ds} \right) \]

\[= P(\sigma w(N) + \int_0^N \lambda_x(s) \, ds < (r_G - \delta + \sigma^2/2)N + \int_0^N \mu_{x+s} \, ds) \]

\[= P(\Theta(N) < f(N)) \]

Where

\[\Theta(N) = \sigma w(N) + \int_0^N \lambda_x(t) \, dt \]

\[= \sigma w(N) + \int_0^N \{ \lambda_x e^{at} + \rho \int_0^t e^{a(t-s)} dw_x(s) \} \, dt \]
$\Theta(N)$ is normally distributed:

$$\Theta(N) \sim N(\mu(N), \sigma^2(N))$$

The probability of joined default becomes:

$$P(A(N)) < L(N)) = \Phi\left(\frac{(r_G - \delta + \sigma^2/2)N + \int_0^N \mu_{x+s}ds - \mu(N)}{\sigma(N)}\right)$$
Value of the 2 moments:

1) mean:

\[m(N) = Eθ(N) = \int_0^N \lambda_x e^{at} \, dt = \lambda_x \frac{e^{aN} - 1}{a} \]

\[\int_{0}^{N} \mu_{x+s} \, ds = \int_{0}^{N} \mu_x e^{\beta s} \, ds = \mu_x \frac{e^{\beta N} - 1}{\beta} \]

So the probability of default becomes:

\[P = \Phi \left(\frac{(r_G - \delta + \sigma^2 / 2)N + (\mu_x \frac{e^{\beta N} - 1}{N} - \lambda_x \frac{e^{aN} - 1}{N})}{\sigma(N)} \right) \]
Value of the 2 moments:

2° variance:

Assumption: independence between financial and longevity risks

\[
\sigma^2(N) = \text{var } \Theta(N) \\
= \sigma^2 N + \rho^2 \int_0^N \int_0^t e^{a(t-s)} \text{d}w_x(s)^2 \\
= \sigma^2 N + \frac{\rho^2}{2a^3} (2aN + e^{2aN} - 4e^{aN} + 3)
\]
6. Extension to DB schemes
We consider a **Final Salary DB Scheme**

At retirement age : lump sum expressed as a multiple of the last salary.

For instance: at 65 : Liability side:

\[
C = \frac{N}{40} \times k \times S(65)
\]

where: \(N = \) years of service at retirement age
\(S(65) = \) last salary before retirement
Following the IAS 19 norms, we use as funding method the *Projected Unit Credit Cost*.

In order to compute the contribution ("*Normal Cost*") we need the following assumptions:

1° *discount rate* (risk free rate): \(r \)

2° *life table*: we will assume here no mortality before retirement (no longevity risk considered here)

3° *salary scale projection*: stochastic model:

\[
S(t) = S(0) \cdot e^{\mu t + \eta z(t) - \eta^2 t/2}
\]
\[z(t) = \text{standard brownian motion} \]

\[\mu = \text{average salary increase} \]

\[\eta = \text{volatility on salary} \]

The contribution for one year of service in a best estimate pricing is then (assuming \(S(0) = 1 \)):

\[NC_0 = \frac{1}{40} ke^{(\mu - r)T} \]

where: \(T = \) residual time to retirement.
Possible loading on contribution (Normal Cost):

We can introduce an eventual loading on contribution:

\[NC_0 = \frac{1}{40} k e^{(\mu-r)T} (1 + \beta) \]
Asset side:

The contribution is assumed to be invested in a geometric Brownian asset:

\[A(t) = A(0).e^{\delta t + \sigma w(t) - \sigma^2 t / 2} \]

\[w(t) = \text{standard brownian motion} \]
\[\text{corr}(w(t), z(t)) = \rho t \]
\[\delta = \text{mean return of the risky asset} \]
\[\sigma = \text{volatility} \]
\[A(0) = NC_0 \]

(correlation between inflation and financial returns !!!)
Asset Liability risk management:

We compare at retirement age for this specific year of service the corresponding Asset and Liability:

Liability at maturity:

\[L(T) = \frac{1}{40} k e^{\mu T + \eta z(T) - \eta^2 T/2} \]

Asset at maturity:

\[A(T) = \frac{1}{40} k (1 + \beta) e^{(\mu - r) T} e^{\delta T + \sigma w(T) - \sigma^2 T/2} \]

Asset and Liability are again both stochastic!!!
Probability of default at maturity:

\[\Psi(T) = P(A(T) < L(T)) \]

\[\Psi(T) = P((1 + \beta)e^{(\mu - r)T} \cdot e^{\delta T} \cdot e^{\sigma_w(T) - \sigma^2T/2} < e^{\mu T} \cdot e^{\eta z(T) - \eta^2T/2}) \]

\[= P(Y(T) < M) \]

With:

\[M = (r - \delta + \sigma^2/2 - \eta^2/2)T - \ln(1 + \beta) \]

\[Y(T) = \sigma w(T) - \eta z(T) \]

\[= N(0, \bar{\sigma}^2) \]

\[\bar{\sigma}^2 = (\sigma^2 + \eta^2 - 2\rho\sigma\eta) \]
Probability of default at maturity:

So finally:

\[\Psi(T) = \Phi(d(T)) \]

With:

\[\Phi = \text{distribution function } N(0,1) \]

\[d(T) = \frac{1}{\delta} \left((r - \delta + \sigma^2 / 2 - \eta^2 / 2) \sqrt{T} - \ln(1 + \beta) / \sqrt{T} \right) \]

Rem.: independent of salary increase!
Probability of default: correlation impact

\[r = 3\% \quad \delta = 7\% \]
\[\mu = 5\% \quad \sigma = 15\% \]
\[\eta = 10\% \quad \beta = 5\% \]
Next research

• Introduction of jumps
• Mean reverting inflation
• Generalization to LEVY processes
• Guarantees on periodical contributions
• Adaptation to PAYG schemes
 \((NDC\ technique) \) with a demographic stochastic entrance process
References

Thank you !!!

Prof. *Pierre DEVOLDER*
ISBA
Université Catholique de Louvain (UCL)
20 Voie du Roman Pays
1348 LOUVAIN la NEUVE
BELGIUM

Mail: pierre.devolder@uclouvain.be